当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elemental Bismuth–Graphene Heterostructures for Photocatalysis from Ultraviolet to Infrared Light
ACS Catalysis ( IF 12.9 ) Pub Date : 2017-09-20 00:00:00 , DOI: 10.1021/acscatal.7b02170
Liang Yan 1, 2, 3 , Zhanjun Gu 1, 2, 3 , Xiaopeng Zheng 1, 2 , Chenyang Zhang 1, 2 , Xu Li 1, 2 , Lina Zhao 1, 2 , Yuliang Zhao 1, 2, 3
Affiliation  

For an optimized use of solar energy, the fabrication of photocatalysts that are sufficiently stable and responsible for harvesting full-spectrum light from ultraviolet to infrared is required to solve environmental issues and the water shortage crisis but remains a great challenge so far. Here, we show that elemental bismuth–graphene heterostructures synthesized by a solvothermal method followed by calcination have high photocatalytic activity under not only ultraviolet but also visible and even infrared light. These heterostructures are very stable after many photocatalytic cycles, and no leaching of bismuth is observed. Analysis of the morphological structures indicates that the heterostructures remain unchanged after repeated cycling, while displaying no appreciable loss in activity. Furthermore, the experimental and theoretical results demonstrate that the heterostructures have the sufficient band gap energy for simultaneously absorbing across the whole solar spectrum and producing photogenerated electrons which can be shuttled across the elemental bismuth–graphene interface, ultimately turning out to be responsible for the degradation reaction. These findings may help the development of elemental photocatalysts with compatible activities from ultraviolet to infrared regions and hence enable solar energy conversion.

中文翻译:

铋-石墨烯异质结构用于紫外到红外光催化

为了优化利用太阳能,需要制造足够稳定并负责收集从紫外到红外的全光谱光的光催化剂,以解决环境问题和缺水危机,但迄今为止仍然是巨大的挑战。在这里,我们证明了通过溶剂热法接着煅烧合成的元素铋-石墨烯异质结构不仅在紫外光下而且在可见光甚至红外光下都具有很高的光催化活性。这些异质结构在许多光催化循环后非常稳定,并且未观察到铋的浸出。形态结构分析表明,异质结构在重复循环后保持不变,而没有显示出明显的活性损失。此外,实验和理论结果表明,异质结构具有足够的带隙能量,可以同时吸收整个太阳光谱并产生光生电子,该光生电子可以穿越元素铋-石墨烯界面,最终导致降解反应。这些发现可以帮助开发具有从紫外线到红外区域具有相容活性的元素光催化剂,从而实现太阳能转化。
更新日期:2017-09-20
down
wechat
bug