当前位置: X-MOL 学术Org. Biomol. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthetic approach to tailored physical associations in peptide-polyurea/polyurethane hybrids
Organic & Biomolecular Chemistry ( IF 3.2 ) Pub Date : 2017-09-01 00:00:00 , DOI: 10.1039/c7ob01352c
L. E. Matolyak 1, 2, 3, 4 , J. K. Keum 4, 5, 6, 7 , K. M. Van de Voorde 1, 2, 3, 4 , L. T. J. Korley 1, 2, 3, 4
Affiliation  

Nature has achieved diverse functionality via hierarchical organization driven by physical interactions such as hydrogen bonding. Synthetically, polymer–peptide hybrids have been utilized to achieve these architectural arrangements and obtain diverse mechanical properties, stimuli responsiveness, and bioactivity. Here, we explore the impact of peptide ordering and soft/hard phase interactions in PEG-based non-chain extended and chain extended peptidic polyurea (PU) and polyurea/polyurethane (PUU) hybrids towards tunable mechanics. Increasing the peptide content of poly(ε-carbobenzyloxy-L-lysine) (PZLY) revealed an increase in α-helical formation and modulation in amine/ether hydrogen bonding, suggesting enhanced intermolecular hydrogen bonding between peptide segments and soft/hard blocks. A balance of phase mixing and microphase segregation was observed depending on competitive hydrogen bonding and the hybrid architecture. This phase behaviour strongly modulated the mechanical response, particularly modulus and extensibility. We anticipate that this solid-state, synthetic framework will expand the reach of our peptide hybrids into biointerfacing materials, including scaffolds and responsive actuators via peptide selection.

中文翻译:

肽-聚脲/聚氨酯杂化体中量身定制的物理缔合的合成方法

大自然通过由物理相互作用(例如氢键)驱动的分层组织实现了多种功能。综合而言,聚合物-肽杂化物已被用于实现这些结构安排并获得多种机械性能,刺激响应性和生物活性。在这里,我们探讨了基于PEG的非扩链和扩链肽聚脲(PU)和聚脲/聚氨酯(PUU)杂合物中肽排序和软/硬相相互作用对可调力学的影响。增加聚(ε-羰基苄氧基-L)的肽含量-赖氨酸(PZLY)揭示了胺/醚氢键中α螺旋形成和调节的增加,表明肽段与软/硬嵌段之间的分子间氢键增强。观察到相混合和微相分离之间的平衡,这取决于竞争性氢键和杂化结构。该相行为强烈地调节了机械响应,特别是模量和可延展性。我们预计,这种固态,合成的框架将通过肽选择将我们的肽杂种的应用范围扩展到生物界面材料,包括支架和响应性致动器。
更新日期:2017-09-20
down
wechat
bug