当前位置: X-MOL 学术Biomaterials › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation
Biomaterials ( IF 14.0 ) Pub Date : 2017-09-19 , DOI: 10.1016/j.biomaterials.2017.09.024
Sita M. Damaraju , Yueyang Shen , Ezinwa Elele , Boris Khusid , Ahmad Eshghinejad , Jiangyu Li , Michael Jaffe , Treena Livingston Arinzeh

The discovery of electric fields in biological tissues has led to efforts in developing technologies utilizing electrical stimulation for therapeutic applications. Native tissues, such as cartilage and bone, exhibit piezoelectric behavior, wherein electrical activity can be generated due to mechanical deformation. Yet, the use of piezoelectric materials have largely been unexplored as a potential strategy in tissue engineering, wherein a piezoelectric biomaterial acts as a scaffold to promote cell behavior and the formation of large tissues. Here we show, for the first time, that piezoelectric materials can be fabricated into flexible, three-dimensional fibrous scaffolds and can be used to stimulate human mesenchymal stem cell differentiation and corresponding extracellular matrix/tissue formation in physiological loading conditions. Piezoelectric scaffolds that exhibit low voltage output, or streaming potential, promoted chondrogenic differentiation and piezoelectric scaffolds with a high voltage output promoted osteogenic differentiation. Electromechanical stimulus promoted greater differentiation than mechanical loading alone. Results demonstrate the additive effect of electromechanical stimulus on stem cell differentiation, which is an important design consideration for tissue engineering scaffolds. Piezoelectric, smart materials are attractive as scaffolds for regenerative medicine strategies due to their inherent electrical properties without the need for external power sources for electrical stimulation.

中文翻译:

三维压电纤维支架选择性促进间充质干细胞分化

生物组织中电场的发现导致人们致力于开发利用电刺激进行治疗的技术。诸如软骨和骨骼的天然组织表现出压电行为,其中由于机械变形会产生电活动。然而,在组织工程中,压电材料的使用尚未作为一种潜在的策略被广泛地探索,其中压电生物材料充当支架以促进细胞行为和大型组织的形成。在这里,我们首次展示了压电材料可以被制成柔性的三维纤维状支架,并可以用于在生理负荷条件下刺激人间充质干细胞分化以及相应的细胞外基质/组织形成。表现出低电压输出或流电势的压电支架促进软骨形成分化,而具有高电压输出的压电支架促进成骨分化。机电刺激比单独的机械负荷促进了更大的分化。结果证明了机电刺激对干细胞分化的累加效应,这是组织工程支架的重要设计考虑因素。压电智能材料因其固有的电学特性而无需用于电刺激的外部电源,因此作为再生医学策略的支架具有吸引力。促进软骨形成分化,高电压输出的压电支架促进成骨分化。机电刺激比单独的机械负荷促进了更大的分化。结果证明了机电刺激对干细胞分化的累加效应,这是组织工程支架的重要设计考虑因素。压电智能材料因其固有的电学特性而无需用于电刺激的外部电源,因此作为再生医学策略的支架具有吸引力。促进软骨形成分化,高电压输出的压电支架促进成骨分化。机电刺激比单独的机械负荷促进了更大的分化。结果证明了机电刺激对干细胞分化的累加效应,这是组织工程支架的重要设计考虑因素。压电智能材料因其固有的电学特性而无需用于电刺激的外部电源,因此作为再生医学策略的支架具有吸引力。这是组织工程支架的重要设计考虑因素。压电智能材料因其固有的电学特性而无需用于电刺激的外部电源,因此作为再生医学策略的支架具有吸引力。这是组织工程支架的重要设计考虑因素。压电智能材料因其固有的电学特性而无需用于电刺激的外部电源,因此作为再生医学策略的支架具有吸引力。
更新日期:2017-09-19
down
wechat
bug