当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pentablock Copolymer Morphology Dependent Transport and Its Impact upon Film Swelling, Proton Conductivity, Hydrogen Fuel Cell Operation, Vanadium Flow Battery Function, and Electroactive Actuator Performance
Journal of Membrane Science ( IF 9.5 ) Pub Date : 2018-01-01 , DOI: 10.1016/j.memsci.2017.09.051
Fei Huang , Timothy D. Largier , Wenjian Zheng , Chris J. Cornelius

Abstract Ionomer composition and morphology impacts functional group distribution, water and ion-transport, and physical properties related to toughness, and degradation resistance. NEXAR MD9100 a pentablock copolymer (PBC) film morphology was dramatically altered when solution-cast into a film using tetrahydrofuran (THF) versus a cyclohexane: heptane (C:H) mixture. Film property and morphology changes were evaluated using Transmission Electron Microscopy (TEM), Small-Angle X-ray Scattering (SAXS), and electrochemical impedance spectroscopy. These changes were compared to Nafion 117 and Nafion 212. Average sulfonated inter-domain spacing through the film's thickness increased from 22.3 nm (C:H cast) to 30.5 nm (THF cast) that was estimated using SAXS. TEM revealed that PBC solution-cast films from C:H contained a random distribution of discrete sulfonated domains. An ordered PBC morphology consisting of lamella and hexagonally packed ion groups were created from a THF solution-cast film. These changes were attributed to favorable solvent-ionomer interactions during solvent evaporation and film densification. This ordered morphology led to increased conductivity (4.5 mS/cm versus 47.8 mS/cm), improved fuel cell power (19 mW/cm 2 versus 160 mW/cm 2 ), enhanced ionomer actuation (3.0 cm versus 6.9 cm), and modest self-discharge improvements for a vanadium redox-flow battery. This study demonstrates that morphology impacts ionomer physical properties, transport, and device function.

中文翻译:

五嵌段共聚物形态相关传输及其对薄膜溶胀、质子电导率、氢燃料电池运行、钒液流电池功能和电活性致动器性能的影响

摘要 离聚物的组成和形态会影响官能团分布、水和离子传输以及与韧性和抗降解性相关的物理性质。当使用四氢呋喃 (THF) 与环己烷: 庚烷 (C:H) 混合物溶液浇铸成薄膜时,NEXAR MD9100 五嵌段共聚物 (PBC) 薄膜形态发生了显着变化。使用透射电子显微镜 (TEM)、小角度 X 射线散射 (SAXS) 和电化学阻抗谱评估薄膜特性和形态变化。将这些变化与 Nafion 117 和 Nafion 212 进行比较。通过薄膜厚度的平均磺化域间间距从 22.3 nm(C:H 浇铸)增加到 30.5 nm(THF 浇铸),这是使用 SAXS 估计的。TEM 显示来自 C 的 PBC 溶液流延薄膜:H 包含随机分布的离散磺化域。由薄片和六边形堆积的离子基团组成的有序 PBC 形态是由 THF 溶液流延薄膜产生的。这些变化归因于溶剂蒸发和膜致密化过程中有利的溶剂-离聚物相互作用。这种有序的形态导致电导率增加(4.5 mS/cm 对 47.8 mS/cm)、燃料电池功率提高(19 mW/cm 2 对 160 mW/cm 2 )、离聚物驱动增强(3.0 cm 对 6.9 cm)和适度钒氧化还原液流电池的自放电改进。这项研究表明,形态会影响离聚物的物理特性、传输和设备功能。这些变化归因于溶剂蒸发和膜致密化过程中有利的溶剂-离聚物相互作用。这种有序的形态导致电导率增加(4.5 mS/cm 对 47.8 mS/cm)、燃料电池功率提高(19 mW/cm 2 对 160 mW/cm 2 )、离聚物驱动增强(3.0 cm 对 6.9 cm)和适度钒氧化还原液流电池的自放电改进。这项研究表明,形态会影响离聚物的物理特性、传输和设备功能。这些变化归因于溶剂蒸发和膜致密化过程中有利的溶剂-离聚物相互作用。这种有序的形态导致电导率增加(4.5 mS/cm 对 47.8 mS/cm)、燃料电池功率提高(19 mW/cm 2 对 160 mW/cm 2 )、离聚物驱动增强(3.0 cm 对 6.9 cm)和适度钒氧化还原液流电池的自放电改进。这项研究表明,形态会影响离聚物的物理特性、传输和设备功能。以及钒氧化还原液流电池的适度自放电改进。这项研究表明,形态会影响离聚物的物理特性、传输和设备功能。以及钒氧化还原液流电池的适度自放电改进。这项研究表明,形态会影响离聚物的物理特性、传输和设备功能。
更新日期:2018-01-01
down
wechat
bug