当前位置: X-MOL 学术Talanta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploiting the 3-Aminopropyltriethoxysilane (APTES) autocatalytic nature to create bioconjugated microarrays on hydrogen-passivated porous silicon
Talanta ( IF 6.1 ) Pub Date : 2017-09-18 , DOI: 10.1016/j.talanta.2017.09.038
Sidney G. Coombs , Sitora Khodjaniyazova , Frank V. Bright

Porous silicon (pSi) based microarrays are attractive because pSi: (i) can be modified in many ways, (ii) possesses a high surface area, and (iii) exhibits strong photoluminescence (PL). These characteristics make pSi-based microarrays candidates for a host of applications including sensing, optoelectronic devices, and photodetectors. Microarray fabrication requires a high-throughput approach to produce chemically modified, spatially isolated spots on a particular substrate. The most stable platforms are characterized by covalent attachment to the substrate. In this paper we exploit the autocatalytic nature of 3-aminopropyltriethoxysilane (APTES) to contact pin-print APTES directly onto as prepared, H-passivated pSi (ap-pSi) without the need for a formal oxidation step. We assess the APTES-derived spots by using PL and Fourier transform infrared spectroscopy (FT-IR) imaging and determine the spot size and spatial homogeneity. All APTES-derived spots exhibited two distinct regions; a silanized core surrounded by an oxidized halo. By decreasing the APTES concentration and increasing the acid concentration, the oxidized halo size decreased by 60%; however, the silanized core diameter remains APTES and acid concentration independent. Bioconjugation can be achieved to all APTES-derived features; however, the highest biomolecule loading was realized by using pure APTES. Together these experiments demonstrate an easy and simple strategy for creating protein microarrays on pSi.



中文翻译:

利用3-氨基丙基三乙氧基硅烷(APTES)的自催化特性,在氢钝化的多孔硅上创建生物共轭微阵列

基于多孔硅(pSi)的微阵列很有吸引力,因为pSi:(i)可以通过多种方式进行修饰,(ii)具有高表面积,并且(iii)表现出很强的光致发光(PL)。这些特性使基于pSi的微阵列成为包括传感,光电器件和光电探测器在内的许多应用的候选者。微阵列制造需要高通量方法才能在特定基板上产生经过化学修饰的,空间隔离的斑点。最稳定的平台的特征在于与底物的共价结合。在本文中,我们利用3-氨基丙基三乙氧基硅烷(APTES)的自催化性质,将针印APTES直接接触到已制备的H钝化pSi(ap-pSi)上,而无需进行正式的氧化步骤。我们通过使用PL和傅立叶变换红外光谱(FT-IR)成像评估APTES衍生的斑点,并确定斑点的大小和空间均匀性。所有APTES衍生的斑点均表现出两个不同的区域。被氧化的光环包围的硅烷化的核。通过降低APTES浓度和增加酸浓度,氧化的卤素尺寸减少了60%;但是,硅烷化的芯直径保持APTES和酸浓度无关。可以对所有APTES衍生的功能实现生物共轭;但是,使用纯APTES可以实现最高的生物分子负载。这些实验共同证明了在pSi上创建蛋白质微阵列的简便策略。被氧化的光环包围的硅烷化的核。通过降低APTES浓度和增加酸浓度,氧化的卤素尺寸减少了60%;但是,硅烷化的芯直径保持APTES和酸浓度无关。可以对所有APTES衍生的功能实现生物共轭;但是,使用纯APTES可以实现最高的生物分子负载。这些实验共同证明了在pSi上创建蛋白质微阵列的简便策略。被氧化的光环包围的硅烷化的核。通过降低APTES浓度和增加酸浓度,氧化的卤素尺寸减少了60%;但是,硅烷化的芯直径保持APTES和酸浓度无关。可以对所有APTES衍生的功能实现生物共轭;但是,使用纯APTES可以实现最高的生物分子负载。这些实验共同证明了在pSi上创建蛋白质微阵列的简便策略。使用纯APTES可实现最高的生物分子负载。这些实验共同证明了在pSi上创建蛋白质微阵列的简便策略。使用纯APTES可实现最高的生物分子负载。这些实验共同证明了在pSi上创建蛋白质微阵列的简便策略。

更新日期:2017-09-18
down
wechat
bug