当前位置: X-MOL 学术J. Anal. At. Spectrom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in discharge-based microplasma for the analysis of trace species by atomic spectrometry
Journal of Analytical Atomic Spectrometry ( IF 3.4 ) Pub Date : 2017-09-18 00:00:00 , DOI: 10.1039/c7ja00279c
Shuang Liu 1, 2, 3, 4, 5 , Yong-Liang Yu 1, 2, 3, 4, 5 , Jian-Hua Wang 1, 2, 3, 4, 5
Affiliation  

Microplasma has become an actual topic of interest for research in atomic spectrometric systems. The excellent characteristics including low power consumption, small size and weight make microplasma a promising technique for developing portable analytical instrumentations for the real-time and on-site measurement of trace species. In this review, the current status of the discharge-based microplasma is presented and discussed from the point of the four typical applications in the field of atomic spectrometry, i.e., excitation source, atomizer, ionization source, and induced vapor generation. Microplasma excitation source is not only highlighted on the direct detection of trace species by optical emission spectrometry (OES), but also focused on a series of the coupling techniques with gas chromatograph (GC), microelectrodialysis (μED), capillary electrophoresis (CE), chemical vapor generation (CVG), and electrothermal vaporization (ETV). Besides atomization function, microplasma atomizer could serve as a preconcentration device to achieve the trap and release of analyte in atomizer. Microplasma ionization source is used to ablate compounds from the sample surface for analyte detection and profile analysis. Microplasma-induced vapor generation provides a novel sample introduction approach with the feature of green analytical method. Future perspectives of microplasma application in the field of atomic spectrometry are also described.

中文翻译:

基于放电的微等离子体在原子光谱分析中的研究进展

微等离子体已成为原子光谱系统研究中的一个实际感兴趣的话题。包括低功耗,体积小和重量轻在内的出色特性使微等离子体成为开发便携式分析仪器以进行痕量物种实时和现场测量的有前途的技术。在这篇综述中,从原子光谱学领域的四个典型应用,即激发源,雾化器,电离源和诱导蒸汽产生的角度,介绍并讨论了基于放电的微等离子体的当前状态。微等离子体激发源不仅在通过光发射光谱法(OES)直接检测痕量物种方面得到了强调,而且还着重于与气相色谱仪(GC),微电渗析(μED),毛细管电泳(CE),化学蒸汽产生(CVG)和电热汽化(ETV)。除雾化功能外,微等离子体雾化器还可以用作预浓缩装置,以实现雾化器中分析物的捕集和释放。微等离子体电离源用于从样品表面消融化合物,以进行分析物检测和轮廓分析。微等离子体诱导的蒸气产生提供了一种具有绿色分析方法特征的新颖的样品引入方法。还介绍了在等离子体光谱领域中微等离子体的未来应用前景。微等离子体电离源用于从样品表面消融化合物,以进行分析物检测和轮廓分析。微等离子体诱导的蒸气产生提供了一种具有绿色分析方法特征的新颖的样品引入方法。还介绍了在等离子体光谱领域中微等离子体的未来应用前景。微等离子体电离源用于从样品表面消融化合物,以进行分析物检测和轮廓分析。微等离子体诱导的蒸气产生提供了一种具有绿色分析方法特征的新颖的样品引入方法。还介绍了在等离子体光谱领域中微等离子体的未来应用前景。
更新日期:2017-09-19
down
wechat
bug