当前位置: X-MOL 学术Biosens. Bioelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing
Biosensors and Bioelectronics ( IF 12.6 ) Pub Date : 2017-09-17 , DOI: 10.1016/j.bios.2017.09.021
Yu Liu , Anthony P.F. Turner , Maojun Zhao , Wing Cheung Mak

A new approach for the facile fabrication of electrochemical biosensors using a biohybrid conducting polymer was demonstrated using glucose oxidase (GOx) and poly (3, 4-ethylenedioxythiophene) (PEDOT) as a model. The biohybrid conducting polymer was prepared based on a template-assisted chemical polymerisation leading to the formation of PEDOT microspheres (PEDOT-MSs), followed by in-situ deposition of platinum nanoparticles (PtNPs) and electrostatic immobilisation of glucose oxidase (GOx) to form water processable GOx-PtNPs-PEDOT-MSs. The morphology, chemical composition and electrochemical performance of the GOx-PtNPs-PEDOT-MS-based glucose biosensor were characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared (FTIR) spectroscopy, zeta potential and electrochemical measurements, respectively. The biosensor delivered a linear response for glucose over the range 0.1–10 mM (R2 = 0.9855) with a sensitivity of 116.25 µA mM−1 cm−2, and limit of detection of 1.55 µM (3×SD/sensitivity). The sensitivity of the developed PEDOT-MS based biosensor is significantly higher (2.7 times) than the best reported PEDOT-based glucose biosensor in the literature. The apparent Michaelis–Menten constant (Kmapp) of the GOx-PtNPs-PEDOT-MS-based biosensors was calculated as 7.3 mM. Moreover, the biosensor exhibited good storage stability, retaining 97% of its sensitivity after 12 days storage. This new bio-hybrid conducting polymer combines the advantages of micro-structured morphology, compatibility with large-scale manufacturing processes, and intrinsic biocatalytic activity and conductivity, thus demonstrating its potential as a convenient material for printed bioelectronics and sensors.



中文翻译:

用于电化学生物传感的可加工酶-混合导电聚合物复合材料

使用葡萄糖氧化酶(GOx)和聚(3,4-乙撑二氧噻吩)(PEDOT)作为模型,证明了一种使用生物杂化导电聚合物轻松制造电化学生物传感器的新方法。基于模板辅助的化学聚合反应制备生物杂化导电聚合物,从而导致形成PEDOT微球(PEDOT-MS),然后原位沉积铂纳米颗粒(PtNPs)和静电固定葡萄糖氧化酶(GOx)形成可水处理的GOx-PtNPs-PEDOT-MS。基于GOx-PtNPs-PEDOT-MS的葡萄糖生物传感器的形态,化学组成和电化学性能使用扫描电子显微镜(SEM),能量色散X射线光谱(EDS),傅立叶变换红外(FTIR)光谱,ζ电势和电化学测量。生物传感器对葡萄糖的线性响应范围为0.1–10 mM(R2 = 0.9855),灵敏度为116.25 µA mM -1  cm -2,检测极限为1.55 µM(3×SD /灵敏度)。已开发的基于PEDOT-MS的生物传感器的灵敏度显着高于文献中报道的基于PEDOT的葡萄糖生物传感器的灵敏度(2.7倍)。表观米氏-曼登常数(K m应用基于GOx-PtNPs-PEDOT-MS的生物传感器)计算为7.3 mM。此外,该生物传感器表现出良好的储存稳定性,在储存12天后仍保持其97%的灵敏度。这种新型的生物杂化导电聚合物结合了微结构形态,与大规模制造工艺的相容性以及固有的生物催化活性和电导率等优点,从而证明了其作为印刷生物电子学和传感器的便捷材料的潜力。

更新日期:2017-09-17
down
wechat
bug