当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of human activities and organic matters on occurrence of polybrominated diphenyl ethers in marine sediment core: A case study in the Southern Yellow Sea, China
Chemosphere ( IF 8.8 ) Pub Date : 2017-09-17 , DOI: 10.1016/j.chemosphere.2017.09.064
Guoguang Wang , Lijuan Feng , Jingshuai Qi , Xianguo Li

The Southern Yellow Sea (SYS) is an important reservoir of anthropogenic organic contaminants, such as polybrominated diphenyl ethers (PBDEs). To reconstruct the historical records of PBDEs and examine their relationships with the human activities and organic matters, a210Pb-dated sediment core was collected from the central mud area in the SYS. The concentrations of tri-to hepta-BDEs (∑7PBDEs) and BDE-209 ranged from 9.8 to 99.8 pg g−1 d.w. and from 12.1 to 855.4 pg g−1 d.w., respectively, both displaying the increasing trends from the bottom to the surface. More importantly, there was a faster increase for PBDEs since the 1990s, especially for BDE-209, which responded well with the rapid economic growth, and the increases of urbanization and industrialization in the local areas of the SYS. The analogously vertical patterns and significant relationships between PBDEs and total organic carbon (TOC) implied the TOC-dependent deposition of PBDEs in the core. Furthermore, multiple biomarker-based proxies of terrestrial organic matter (TOM) and marine organic matter (MOM) were introduced to systematically investigate the different effects of TOM and MOM on PBDE deposition in the SYS. The similarly down-core profiles and significant correlations were found between PBDEs and the MOM proxies (sum of rassicasterol, dinosterol and C37 alkenones (∑A + B + D) and marine TOC) as well as the branched and isoprenoid tetraether (BIT), but not for TOM proxies (∑C27+C29+C31n-alkanes, terrestrial and marine biomarker ratio (TMBR) and terrestrial TOC), indicating that MOM was an important factor driving PBDE deposition in the sediment core from the SYS.
更新日期:2017-09-18
down
wechat
bug