当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
By-product processing of Si3N4 saw-tooth nanoribbons during carbon foam processing using pyrolysis–nitridation reactions
CrystEngComm ( IF 3.1 ) Pub Date : 2017-08-04 00:00:00 , DOI: 10.1039/c7ce01121k
Shameel Farhan 1, 2, 3, 4, 5 , Rumin Wang 1, 2, 3, 4, 5 , Dandan Zhang 1, 2, 3, 4, 5 , Kezhi Li 3, 6, 7, 8
Affiliation  

Si3N4 saw-tooth nanoribbons (SNSNs) have been synthesized via a novel approach involving a by-product pyrolysis–nitridation process during carbon foam manufacturing at 1450 °C. The SNSNs formed are ribbon shaped, 80–750 nm wide, 70–80 nm thick and several micrometres in length. The process simply involved thermal pyrolysis of a powdered mixture containing carbon foam precursors and silicon powder under flowing high-purity nitrogen. Pyrolysis gases rich in silicon, silicon oxide and active nitrogen vapours promoted the subsequent synthesis of the SNSNs over the outer surface of the carbon foams via a vapour–solid mechanism. The crystal structure, morphology, chemical composition, growth mechanism and photoluminescence (PL) properties have been studied. The infrared adsorption of SNSNs exhibited two absorption bands with all the peaks related to the Si–N bonds of the α-Si3N4 crystalline structure. X-ray photoelectron spectroscopy measurements further confirmed the chemical composition, with minor impurities such as oxygen and carbon. A single nanoribbon has the same width-to-thickness ratio, suggesting a stable morphology resulting from the reduction of the overall surface energy. Intense PL was observed centred at 2.03, 2.48, 2.62, and 3.01 eV, which resulted from the recombination between the intrinsic conduction band edges and silicon dangling bonds with deep-level or trap-level states.

中文翻译:

使用热解-氮化反应在碳泡沫加工过程中对Si 3 N 4锯齿形纳米带进行副产物处理

Si 3 N 4锯齿状纳米带(SNSN)是通过一种新颖的方法合成的该方法涉及在1450°C的碳泡沫制造过程中进行的副产品热解-氮化工艺。形成的SNSN呈带状,宽度为80-750 nm,厚度为70-80 nm,长度为几微米。该方法仅涉及在流动的高纯度氮气下对包含碳泡沫前体和硅粉的粉末混合物进行热解。富含硅,氧化硅和活性氮蒸气的热解气体通过碳泡沫的外表面促进了SNSN的后续合成蒸气稳固的机制。研究了晶体结构,形态,化学组成,生长机理和光致发光(PL)特性。SNSNs的红外吸附表现出与所有相关的Si-N键的峰值两个吸收带α-的Si 3 Ñ 4晶体结构。X射线光电子能谱测量进一步证实了化学成分,其中含有少量杂质,例如氧气和碳。单个纳米带具有相同的宽厚比,表明由于降低了总表面能而形成了稳定的形态。观察到强烈的PL集中在2.03、2.48、2.62和3.01 eV,这是由于本征导带边缘和具有深能级或陷阱能级状态的硅悬空键之间的复合所致。
更新日期:2017-09-18
down
wechat
bug