当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Anisotropic Conductors
Advanced Materials ( IF 29.4 ) Pub Date : 2017-09-18 , DOI: 10.1002/adma.201703331
Jiayu Wan 1 , Jianwei Song 1 , Zhi Yang 2 , Dylan Kirsch 1 , Chao Jia 1 , Rui Xu 2 , Jiaqi Dai 1 , Mingwei Zhu 1 , Lisha Xu 1 , Chaoji Chen 1 , Yanbin Wang 1 , Yilin Wang 1 , Emily Hitz 1 , Steven D. Lacey 1 , Yongfeng Li 1 , Bao Yang 2 , Liangbing Hu 1
Affiliation  

Composite materials with ordered microstructures often lead to enhanced functionalities that a single material can hardly achieve. Many biomaterials with unusual microstructures can be found in nature; among them, many possess anisotropic and even directional physical and chemical properties. With inspiration from nature, artificial composite materials can be rationally designed to achieve this anisotropic behavior with desired properties. Here, a metallic wood with metal continuously filling the wood vessels is developed, which demonstrates excellent anisotropic electrical, thermal, and mechanical properties. The well‐aligned metal rods are confined and separated by the wood vessels, which deliver directional electron transport parallel to the alignment direction. Thus, the novel metallic wood composite boasts an extraordinary anisotropic electrical conductivity (σ||) in the order of 1011, and anisotropic thermal conductivity (κ||) of 18. These values exceed the highest reported values in existing anisotropic composite materials. The anisotropic functionality of the metallic wood enables it to be used for thermal management applications, such as thermal insulation and thermal dissipation. The highly anisotropic metallic wood serves as an example for further anisotropic materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higher anisotropic ratios, allowing them to be implemented in a variety of applications.

中文翻译:

高度各向异性导体

具有有序的微观结构的复合材料通常会导致功能增强,而单一材料几乎无法实现这种功能。在自然界中可以发现许多具有不同微结构的生物材料。其中许多具有各向异性甚至定向的物理和化学性质。从自然界中汲取灵感,可以合理地设计人造复合材料,以实现具有所需特性的这种各向异性行为。在这里,开发了一种金属木材,其金属连续填充到木器皿中,其表现出出色的各向异性电,热和机械性能。排列良好的金属棒由木容器限制和分隔,它们传递平行于排列方向的方向性电子传输。因此,|| / σ⊥的顺序为10 11,各向异性热导率(κ || / κ⊥)为18。这些值超过了现有各向异性复合材料中报告的最高值。金属木材的各向异性功能使其可以用于热管理应用,例如隔热和散热。高度各向异性的金属木材可作为进一步各向异性材料设计的一个例子。其他具有不同生物模板/基质和填料的复合材料可以实现更高的各向异性比率,从而使其可以在多种应用中实现。
更新日期:2017-09-18
down
wechat
bug