当前位置: X-MOL 学术Biomacromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supramolecular Copolymerization of Short Peptides and Polyoxometalates: toward the Fabrication of Underwater Adhesives
Biomacromolecules ( IF 6.2 ) Pub Date : 2017-09-15 00:00:00 , DOI: 10.1021/acs.biomac.7b00817
Jing Xu 1 , Xiangyi Li 1 , Xiaodong Li 1 , Bao Li 1 , Lixin Wu 1 , Wen Li 1 , Xiaoming Xie 1 , Rong Xue 2
Affiliation  

Peptide assembly has reached exquisite levels of efficiency in the creation of bioactive materials. However, we have not yet been able to take what we have learned from peptide assembly to develop a general strategy for the fabrication of biomimetic underwater adhesives, which retain significant advantages as medical glue for clinical treatment. Herein we report a simple approach to prepare peptide-based adhesives through the supramolecular polymerization of cationic peptides drove by polyoxometalates (PMs). Mass spectra, Fourier-transform infrared spectra and 183W NMR spectra confirmed the structural integrity of peptides and PMs during the coassembly process. Scanning electron microscopy demonstrated that the multivalent interactions between peptides and polyoxometaltes led to the formation of robust 3D network structures. The rheological study revealed that the peptide/PM assemblies exhibited mechanically rigid gel-like behavior and self-healing property. Interestingly, the assemblies showed the capacity to adhere various wet solid materials under waterline. The shear strength of the peptide-based adhesives are stronger than that of the commercially available fibrin glue. This finding is exciting and serves to expand our capability of the fabrication of peptide-based materials.

中文翻译:

短肽和多金属氧酸盐的超分子共聚:面向水下胶粘剂的制造。

肽组装在生物活性材料生产中已经达到了精湛的效率水平。但是,我们还无法从肽组装中汲取的教训来开发仿生水下胶粘剂制造的一般策略,该仿生胶粘剂作为临床治疗用医用胶仍具有显着优势。本文中,我们报告了一种通过多金属氧酸盐(PMs)驱动的阳离子肽的超分子聚合来制备基于肽的胶粘剂的简单方法。质谱,傅立叶变换红外光谱和1831 H NMR光谱证实了共组装过程中肽和PM的结构完整性。扫描电子显微镜表明,肽与多金属氧酸盐之间的多价相互作用导致了坚固的3D网络结构的形成。流变学研究表明,肽/ PM组件表现出机械刚性的凝胶状行为和自愈特性。有趣的是,组件显示了在水线下粘附各种湿固体材料的能力。肽基粘合剂的剪切强度比市售纤维蛋白胶的剪切强度强。这一发现令人振奋,有助于扩大我们制造基于肽的材料的能力。
更新日期:2017-09-15
down
wechat
bug