当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of fillable microparticles and other complex 3D microstructures
Science ( IF 56.9 ) Pub Date : 2017-09-14 , DOI: 10.1126/science.aaf7447
Kevin J. McHugh 1 , Thanh D. Nguyen 1 , Allison R. Linehan 1 , David Yang 1 , Adam M. Behrens 1 , Sviatlana Rose 1 , Zachary L. Tochka 1 , Stephany Y. Tzeng 1 , James J. Norman 1 , Aaron C. Anselmo 1 , Xian Xu 1 , Stephanie Tomasic 1 , Matthew A. Taylor 1 , Jennifer Lu 1 , Rohiverth Guarecuco 1 , Robert Langer 1 , Ana Jaklenec 1
Affiliation  

Technology used for computer chip manufacturing is combined with soft lithography to produce small polymeric structures. Putting the pieces together One route to improving the delivery of existing drugs is by encapsulation inside a protective but slowly degrading shell. Such slow-release capsules improve drug availability in vivo, reduce side effects, and allow for more constant dose delivery. McHugh et al. leverage a number of existing fabrication techniques to make tiny (∼400-µm), hollow injectable microparticles that can be filled with fluid containing the therapeutic agent. By adjusting the degradation rate of the microparticle material (in this case, a lactic/glycolic copolymer), the cargo in the internal reservoir can be released at a desired time, ranging from a few days to 2 months. Science, this issue p. 1138 Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.

中文翻译:

可填充微粒和其他复杂 3D 微结构的制造

用于计算机芯片制造的技术与软光刻相结合,以生产小型聚合物结构。将各个部分放在一起 改善现有药物输送的一种方法是将其封装在保护性但缓慢降解的外壳内。这种缓释胶囊提高了体内药物的利用率,减少了副作用,并允许更恒定的剂量递送。麦克休等人。利用许多现有的制造技术来制造微小(约 400 微米)的中空可注射微粒,这些微粒可以填充含有治疗剂的流体。通过调节微粒材料(在这种情况下为乳酸/乙醇共聚物)的降解速率,内部储库中的货物可以在几天到 2 个月的所需时间释放。科学,这个问题 p。1138 由微制造和增材制造创建的三维 (3D) 微结构已在从生物医学到微电子等多个领域展示了价值。然而,用于创建这些设备的技术在分辨率、材料兼容性和决定可形成的微结构类型的几何约束方面各有特点。我们描述了一种称为 StampEd 聚合物层组装 (SEAL) 的微制造方法,并创建了使用传统 3D 打印无法生产的可注射脉冲药物递送微粒、pH 传感器和 3D 微流体装置。SEAL 使我们能够以高分辨率生成具有复杂几何形状的微结构,
更新日期:2017-09-14
down
wechat
bug