当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fractal Analysis of Pore Network in Tight Gas Sandstones Using NMR Method: A Case Study from the Ordos Basin, China
Energy & Fuels ( IF 5.3 ) Pub Date : 2017-09-14 00:00:00 , DOI: 10.1021/acs.energyfuels.7b01007
Xinhe Shao 1, 2 , Xiongqi Pang 1, 2 , Hui Li 1, 2 , Xue Zhang 1, 2
Affiliation  

To characterize the pore structure and quantify fractal dimensions of tight gas sandstones, a case study is performed on the Lower-Middle Permian tight sandstones in the Ordos Basin in China by conducting a series of experiments including X-ray diffraction (XRD) analysis, routine petrophysical measurements, thin section and scanning electronic microscope (SEM) observations, and nuclear magnetic resonance (NMR) experiment. The studied tight sandstones mainly consist of quartz and clay minerals, and pore types include primary intergranular pores, inter- and intragranular dissolution pores, as well as micropores associated with clay aggregates; T2 spectra reflect three types of pore size distributions in the studied samples, indicating a rather irregular pore distribution pattern in tight sandstones; NMR can estimate porosity of tight sandstones accurately, and movable-fluid porosity from NMR can better reflect the permeability of tight sandstones than total porosity. Two fractal dimensions, Dbnd (with respect to bound-fluid pores) and Dmov (with respect to movable-fluid pores), are calculated to be 1.1135–1.8116 (average 1.4750) and 2.6816–2.9932 (average 2.8921), respectively. Dbnd increases with the decrease of detrital quartz content and the increase of clay mineral content, whereas Dmov increases with the increase in authigenic quartz content and the decrease of detrital quartz content; fractal dimensions can reflect the physical properties of tight sandstones, as large Dbnd and Dmov values typically result in low movable-fluid porosity and permeability; the pore network of tight sandstones can be considered as a dual-scale pore system based on fractal theory, whereas Dbnd and Dmov can reveal the roughness of bound-fluid pore surface and the distribution of movable-fluid pores, respectively. This study shows that NMR fractal dimension can be employed as an effective indicator to characterize the pore network of tight sandstones.
更新日期:2017-09-15
down
wechat
bug