当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics
Lab on a Chip ( IF 6.1 ) Pub Date : 2017-09-05 00:00:00 , DOI: 10.1039/c7lc00694b
Thomas M. Valentin 1, 2, 3, 4, 5 , Susan E. Leggett 1, 2, 3, 4, 5 , Po-Yen Chen 1, 2, 3, 4, 5 , Jaskiranjeet K. Sodhi 1, 2, 3, 4, 5 , Lauren H. Stephens 1, 2, 3, 4, 5 , Hayley D. McClintock 1, 2, 3, 4, 5 , Jea Yun Sim 1, 2, 3, 4, 5 , Ian Y. Wong 1, 2, 3, 4, 5
Affiliation  

3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. Overall, this demonstration of light-based 3D printing using non-covalent crosslinking may enable adaptive and stimuli-responsive biomaterials, which could be utilized for bio-inspired sensing, actuation, drug delivery, and tissue engineering.

中文翻译:

离子交联藻酸盐水凝胶的立体光刻印刷,用于可降解生物材料和微流控

具有时空功能的3D打印生物材料可以实现对流体流动和活动细胞的界面处理。然而,由于这些动态生物材料必须对多种生物相容性刺激做出响应,因此实施起来具有挑战性。在这里,我们展示了使用非共价(离子)交联的水凝胶立体平版印刷技术,该技术可实现可逆的图案化以及可控的降解。我们证明了使用藻酸钠,光致产酸剂和二价阳离子盐的各种组合的这种方法,这些方法可用于调整水凝胶降解动力学,图案保真度和机械性能。该方法首先用于在T型结和梯度装置的第二个封装水凝胶中为可灌注微流体通道模板化。印刷藻酸盐微结构的存在和降解被进一步证实对上皮细胞具有最小的毒性。可降解的藻酸盐屏障用于指导集体细胞从不同的初始几何形状迁移,从而揭示了前端速度和前导细胞形成的差异。总体而言,使用非共价交联进行的基于光的3D打印的演示可以实现自适应的,具有刺激性的生物材料,这些材料可用于生物启发的传感,驱动,药物输送和组织工程。
更新日期:2017-09-14
down
wechat
bug