当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Encapsulated Vanadium‐Based Hybrids in Amorphous N‐Doped Carbon Matrix as Anode Materials for Lithium‐Ion Batteries
Small ( IF 13.3 ) Pub Date : 2017-09-12 , DOI: 10.1002/smll.201702081
Bei Long 1 , Muhammad-Sadeeq Balogun 2 , Lei Luo 2 , Yang Luo 2 , Weitao Qiu 2 , Shuqin Song 1 , Lei Zhang 3 , Yexiang Tong 1, 2, 4
Affiliation  

Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium‐ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide–nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium‐ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide–nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM‐700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g−1 and attractive rate performance (220 mAh g−1) under the current density of up to 2 A g−1. The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide–nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well.

中文翻译:

非晶态N掺杂碳基体中的封装钒基杂化物作为锂离子电池的负极材料

最近,研究人员在将过渡金属化合物杂化物用作锂离子电池的负极材料并开发这些杂化物的简单制备方法方面取得了重大进展。为此,本研究报告了一种简便而可扩展的方法,该方法可通过简单地混合偏钒酸铵和三聚氰胺作为锂离子电池的负极材料来制造封装在无定形碳基质中的氧化钒-氮化物复合材料。通过调节混合物的退火温度,可以合成钒氧化物-氮化物化合物的不同杂化物。在700°C下制备的电极材料,即VM-700,在0.5 A g -1的电流密度下,经过200次循环后,可保持其可逆容量的92%,具有出色的循环稳定性,并具有极高的速率性能(220 mAh g -1)在高达2 A g -1的电流密度下。优异的电化学性能可归因于钒化合物杂化物的异质结形式的协同作用,优异的导电碳电子转移能力的提高以及循环中钒氧化物-氮化物的膨胀和聚集。这些有趣的发现也将为过渡金属氧化物和氮化物复合材料的制备提供参考。
更新日期:2017-09-12
down
wechat
bug