当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation
Nano Research ( IF 9.9 ) Pub Date : 2017-05-06 00:00:00 , DOI: 10.1007/s12274-017-1549-8
Robin Augustine , Pan Dan , Alejandro Sosnik , Nandakumar Kalarikkal , Nguyen Tran , Brice Vincent , Sabu Thomas , Patrick Menu , Didier Rouxel

Piezoelectric materials that generate electrical signals in response to mechanical strain can be used in tissue engineering to stimulate cell proliferation. Poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), a piezoelectric polymer, is widely used in biomaterial applications. We hypothesized that incorporation of zinc oxide (ZnO )nanoparticles into the P(VDF-TrFE) matrix could promote adhesion, migration, and proliferation of cells, as well as blood vessel formation (angiogenesis). In this study, we fabricated and comprehensively characterized a novel electrospun P(VDF-TrFE)/ZnO nanocomposite tissue engineering scaffold. We analyzed the morphological features of the polymeric matrix by scanning electron microscopy, and utilized Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry to examine changes in the crystalline phases of the copolymer due to addition of the nanoparticles. We detected no or minimal adverse effects of the biomaterials with regard to blood compatibility in vitro, biocompatibility, and cytotoxicity, indicating that P(VDF-TrFE)/ZnO nanocomposite scaffolds are suitable for tissue engineering applications. Interestingly, human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells cultured on the nanocomposite scaffolds exhibited higher cell viability, adhesion, and proliferation compared to cells cultured on tissue culture plates or neat P(VDF-TrFE) scaffolds. Nanocomposite scaffolds implanted into rats with or without hMSCs did not elicit immunological responses, as assessed by macroscopic analysis and histology. Importantly, nanocomposite scaffolds promoted angiogenesis, which was increased in scaffolds pre-seeded with hMSCs. Overall, our results highlight the potential of these novel P(VDF-TrFE)/ZnO nanocomposites for use in tissue engineering, due to their biocompatibility and ability to promote cell adhesion and angiogenesis.

中文翻译:

电纺聚(偏二氟乙烯-三氟乙烯)/氧化锌纳米复合组织工程支架,具有增强的细胞粘附力和血管形成

响应于机械应变而产生电信号的压电材料可用于组织工程中,以刺激细胞增殖。聚(偏二氟乙烯-三氟乙烯)(P(VDF-TrFE))是一种压电聚合物,已广泛用于生物材料应用中。我们假设将氧化锌(ZnO)纳米颗粒掺入P(VDF-TrFE)基质中可以促进细胞的粘附,迁移和增殖,以及血管形成(血管生成)。在这项研究中,我们制造并全面表征了新型电纺P(VDF-TrFE)/ ZnO纳米复合组织工程支架。我们通过扫描电子显微镜分析了聚合物基质的形态特征,并利用傅立叶变换红外光谱,X射线衍射,和差示扫描量热法以检查由于添加纳米颗粒而导致的共聚物的结晶相的变化。在血液相容性方面,我们没有发现生物材料的不良影响,也没有发现任何不良影响体外,生物相容性和细胞毒性,表明P(VDF-TrFE)/ ZnO纳米复合支架适用于组织工程应用。有趣的是,与在组织培养板或纯P(VDF-TrFE)支架上培养的细胞相比,在纳米复合材料支架上培养的人间充质干细胞(hMSCs)和人脐静脉内皮细胞显示出更高的细胞活力,粘附力和增殖。如通过宏观分析和组织学评估,植入具有或不具有hMSC的大鼠中的纳米复合支架没有引起免疫反应。重要的是,纳米复合材料支架促进了血管生成,在预接种了hMSCs的支架中增加了。总体而言,我们的结果突出了这些新型P(VDF-TrFE)/ ZnO纳米复合材料在组织工程中的潜力,
更新日期:2017-09-09
down
wechat
bug