当前位置: X-MOL 学术Biotechnol. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Covalent and non-covalent chemical engineering of actin for biotechnological applications
Biotechnology Advances ( IF 16.0 ) Pub Date : 2017-08-19 , DOI: 10.1016/j.biotechadv.2017.08.002
Saroj Kumar , Alf Mansson

The cytoskeletal filaments are self-assembled protein polymers with 8–25 nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways.



中文翻译:

肌动蛋白的共价和非共价化学工程用于生物技术应用

细胞骨架细丝是自组装的蛋白质聚合物,直径为8–25 nm,最长可达几十微米。它们在真核细胞中具有一系列关键作用,包括运输细胞内货物(主要是带有动力蛋白和动力蛋白运动的微管)和细胞运动(主要是肌动蛋白和肌球蛋白),其中肌肉收缩就是一个例子。二十年来,细胞骨架细丝及其相关的运动系统已被研究用于纳米技术应用,包括小型化的传感器系统和芯片实验室设备。几项发展也围绕着在没有电机伴侣的情况下仅对灯丝的可能利用进行了开发。使用细胞骨架细丝进行应用的努力通常需要细丝的化学或基因工程,例如与荧光团,抗体,寡核苷酸或各种大分子复合物例如纳米颗粒的特异性缀合。相似的偶联方法对于一系列基础生物物理研究也是有帮助的。在这里,我们将综述肌动蛋白丝的非共价和共价化学修饰方法,重点关注不同方法的关键优势和挑战以及缀合过程中的关键步骤。我们还回顾了工程化肌动蛋白丝在纳米技术应用以及肌动蛋白和肌球蛋白功能的一些关键基础研究中的潜在用途。最后,

更新日期:2017-08-19
down
wechat
bug