当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries
Nano Energy ( IF 17.6 ) Pub Date : 2017-09-06 , DOI: 10.1016/j.nanoen.2017.09.002
Yu Zhang , Wenping Sun , Zhong-Zhen Luo , Yun Zheng , Zhenwei Yu , Dan Zhang , Jun Yang , Hui Teng Tan , Jixin Zhu , Xiaolin Wang , Qingyu Yan , Shi Xue Dou

Few-layer black phosphorus (BP) is a promising anode material for sodium ion batteries (SIBs) due to its high theoretical capacity and favorable layered structure. However, practical implementation is hindered by sluggish reaction kinetics and large volume change during de/sodiation process. Especially, combining BP with large portion of low-capacity carbonaceous materials is a common strategy to improve the Na storage properties, but leading to reduced specific capacity based on the overall mass of the whole electrode. To address these challenges, nanoscale surface engineering of few-layer BP is herein performed by homogeneously depositing horizontally aligned Poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on specially surface-modified BP nanosheets. Such material design could achieve simultaneously: (1) enhanced charge transfer kinetics and (2) super surface wettability with electrolyte. Benefiting from the unique functionalization, the reaction kinetics are greatly enhanced accordingly for both sodium and lithium storage. Our strategy sheds light on designing advanced electrodes for high-performance rechargeable batteries and other energy storage/conversion devices.



中文翻译:

功能化的几层黑磷,具有超湿性,可增强可充电电池的反应动力学

几层黑磷(BP)由于其较高的理论容量和良好的分层结构,是用于钠离子电池(SIB)的有希望的负极材料。然而,在脱/沉淀过程中反应动力学缓慢和体积变化大,阻碍了实际的实施。尤其是,将BP与大部分低容量碳质材料结合使用是提高Na储存性能的常见策略,但会导致基于整个电极总质量的比容量降低。为了解决这些挑战,本文中的几层BP的纳米级表面工程是通过在经过特殊表面改性的BP纳米片上均匀沉积水平排列的聚(3,4-乙烯二氧噻吩)(PEDOT)纳米纤维而进行的。这种材料设计可以同时实现:(1)增强的电荷转移动力学和(2)与电解质的超表面润湿性。得益于独特的功能性,相应的钠和锂存储动力学大大提高。我们的策略为设计高性能可充电电池和其他储能/转换设备的高级电极提供了启示。

更新日期:2017-09-06
down
wechat
bug