当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of interconnected micropores in poly(arylene ether) based single ion conducting blend polymer membranes via vapor-induced phase separation
Journal of Membrane Science ( IF 9.5 ) Pub Date : 2017-12-01 , DOI: 10.1016/j.memsci.2017.09.003
Yazhou Chen , Zhong Li , Xupo Liu , Danli Zeng , Yunfeng Zhang , Yubao Sun , Hanzhong Ke , Hansong Cheng

Abstract We report the construction of interconnected micropores in a poly(arylene ether) based single ion conducting blend polymer electrolyte by tuning phase separation. Bis(4-fluorine benzene sulfonyl)imide is copolymerized with bis(4-hydroxy benzene sulfonyl)imide and bisphenol A separately to form two types of AB alternating block copolymers, i.e., lithiated poly(bis(benzene sulfonyl)imide)ether (LiPBIE) and lithiated poly(bisphenol A-alt-bis(4-fluorine benzene sulfonyl)imide)ether (LiPAFE). The former is immiscible with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and the latter is well entangled with the binder upon introducing the bisphenol group. The results reveal that the LiPBIE blend film exhibits an interconnected microporous structure while the LiPAFE blend film does not. Even if the ion exchange capacity (IEC) of the LiPAFE blend film is raised to the level of the LiPBIE blend film by reducing the proportion of PVDF-HFP, the film is porous only on the surface but remains dense in its bulk. The comparative experiments confirm that the disparity of polarity and solubility between the ionomers and the binder is largely responsible for the phase separation. The microporous single ion conducting gel polymer electrolyte offers an ionic conductivity of 0.52 mS cm−1 at 25 °C and its membrane displays the capability of dendrite suppression. A battery incorporating the electrolyte film exhibits excellent rate performance and electrochemical stability.

中文翻译:

通过气相诱导相分离在聚亚芳基醚基单离子导电共混聚合物膜中构建互连微孔

摘要 我们报告了通过调节相分离在基于聚(亚芳基醚)的单离子导电共混聚合物电解质中构建互连微孔。双(4-氟苯磺酰基)酰亚胺与双(4-羟基苯磺酰基)酰亚胺和双酚A分别共聚,形成两种AB型交替嵌段共聚物,即锂化聚(双(苯磺酰基)酰亚胺)醚(LiPBIE) )和锂化聚(双酚 A-alt-双(4-氟苯磺酰基)酰亚胺)醚(LiPAFE)。前者与聚(偏二氟乙烯-共六氟丙烯)(PVDF-HFP)不混溶,而后者在引入双酚基团时与粘合剂很好地缠结。结果表明,LiPBIE 共混膜表现出相互连接的微孔结构,而 LiPAFE 共混膜则没有。即使通过减少 PVDF-HFP 的比例将 LiPAFE 共混膜的离子交换容量 (IEC) 提高到 LiPBIE 共混膜的水平,该膜也仅在表面是多孔的,但在其主体中仍然保持致密。对比实验证实,离聚物和粘合剂之间极性和溶解度的差异在很大程度上是造成相分离的原因。微孔单离子导电凝胶聚合物电解质在 25°C 下提供 0.52 mS cm-1 的离子电导率,其膜显示出抑制枝晶的能力。包含电解质膜的电池表现出优异的倍率性能和电化学稳定性。对比实验证实,离聚物和粘合剂之间极性和溶解度的差异在很大程度上是造成相分离的原因。微孔单离子导电凝胶聚合物电解质在 25°C 下提供 0.52 mS cm-1 的离子电导率,其膜显示出抑制枝晶的能力。包含电解质膜的电池表现出优异的倍率性能和电化学稳定性。对比实验证实,离聚物和粘合剂之间极性和溶解度的差异在很大程度上是造成相分离的原因。微孔单离子导电凝胶聚合物电解质在 25°C 下提供 0.52 mS cm-1 的离子电导率,其膜显示出抑制枝晶的能力。包含电解质膜的电池表现出优异的倍率性能和电化学稳定性。
更新日期:2017-12-01
down
wechat
bug