当前位置: X-MOL 学术Powder Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predictions of granular temperatures of particles in a flat bottomed spout bed
Powder Technology ( IF 5.2 ) Pub Date : 2017-12-01 , DOI: 10.1016/j.powtec.2017.08.058
Shuyan Wang , Ruichao Tian , Haolong Li , Xiaoqi Li , Xu Wang , Jian Zhao , Lili Liu , Qiji Sun

Abstract The configurational temperature and translational and rotational granular temperatures of particles are simulated using CFD-DEM in a flat bottomed spout bed. The distributions of velocity and volume fraction of particles are obtained in the bed. The translational and rotational granular temperatures are calculated from simulated instantaneous translational and angular velocities of particles. The statistical framework is proposed to define the configurational temperature or compactivity of particles in a flat bottomed spout bed. The configurational temperatures of particles are calculated from simulated instantaneous overlaps of particles. The configurational temperatures are larger at high solids volume fraction than that at low solids volume fractions. The simulated translational and rotational granular temperatures decrease with the increase of solids volume fractions. The predicted configurational temperatures are larger than that translational and rotational granular temperature, indicating that the rate of energy dissipation does contribute by deformation of elastic particles in a flat bottomed spout bed. The lower rotational granular temperature means the translational mechanism dominates the flow behaviors of particles. The influence of air jet velocity on granular temperatures and configurational temperature is analyzed. Increasing air jet velocity, the translational and rotational granular temperatures and configurational temperature are increased.

中文翻译:

平底喷口床中颗粒颗粒温度的预测

摘要 使用CFD-DEM在平底喷口床中模拟颗粒的构型温度和平移和旋转颗粒温度。在床中获得颗粒的速度和体积分数的分布。平移和旋转颗粒温度是根据粒子的模拟瞬时平移和角速度计算的。建议使用统计框架来定义平底喷口床中颗粒的配置温度或密实度。粒子的配置温度是根据粒子的模拟瞬时重叠计算的。高固体体积分数时的构型温度高于低固体体积分数时的构型温度。模拟的平移和旋转颗粒温度随着固体体积分数的增加而降低。预测的配置温度大于平移和旋转颗粒温度,表明能量耗散率确实由平底喷口床中弹性颗粒的变形造成。较低的旋转颗粒温度意味着平移机制主导着颗粒的流动行为。分析了空气射流速度对颗粒温度和构型温度的影响。增加空气射流速度,平移和旋转颗粒温度和构型温度增加。预测的配置温度大于平移和旋转颗粒温度,表明能量耗散率确实由平底喷口床中弹性颗粒的变形造成。较低的旋转颗粒温度意味着平移机制主导着颗粒的流动行为。分析了空气射流速度对颗粒温度和构型温度的影响。增加空气射流速度,平移和旋转颗粒温度和构型温度增加。预测的配置温度大于平移和旋转颗粒温度,表明能量耗散率确实由平底喷口床中弹性颗粒的变形造成。较低的旋转颗粒温度意味着平移机制主导着颗粒的流动行为。分析了空气射流速度对颗粒温度和构型温度的影响。增加空气射流速度,平移和旋转颗粒温度和构型温度增加。分析了空气射流速度对颗粒温度和构型温度的影响。增加空气射流速度,平移和旋转颗粒温度和构型温度增加。分析了空气射流速度对颗粒温度和构型温度的影响。增加空气射流速度,平移和旋转颗粒温度和构型温度增加。
更新日期:2017-12-01
down
wechat
bug