当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting the Electrocatalytic Activity of Co3O4 Nanosheets for a Li-O2 Battery through Modulating Inner Oxygen Vacancy and Exterior Co3+/Co2+ Ratio
ACS Catalysis ( IF 12.9 ) Pub Date : 2017-08-30 00:00:00 , DOI: 10.1021/acscatal.7b02313
Junkai Wang 1 , Rui Gao 1 , Dong Zhou 2 , Zhongjun Chen 3 , Zhonghua Wu 3 , Gerhard Schumacher 2 , Zhongbo Hu 1 , Xiangfeng Liu 1
Affiliation  

Rechargeable Li-O2 batteries have been considered as the most promising chemical power owing to their ultrahigh specific energy density. However, the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) result in high overpotential (∼1.5 V), poor rate capability, and even a short cycle life, which critically hinder their practical applications. Herein, we propose a synergistic strategy to boost the electrocatalytic activity of Co3O4 nanosheets for Li-O2 batteries by tuning the inner oxygen vacancies and the exterior Co3+/Co2+ ratios, which have been identified by Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption near edge structure spectroscopy. Operando X-ray diffraction and ex situ scanning electron microscopy are used to probe the evolution of the discharge product. In comparison with bulk Co3O4, the cells catalyzed by Co3O4 nanosheets show a much higher initial capacity (∼24051.2 mAh g–1), better rate capability (8683.3 mAh g–1@400 mA g–1) and cycling stability (150 cycles@400 mA g–1), and lower overpotential. The large enhancement in the electrochemical performances can be mainly attributed to the synergistic effect of the architectured 2D nanosheets, the oxygen vacancies, and Co3+/Co2+ difference between the surface and the interior. Moreover, the addition of LiI to the electrolyte can further reduce the overpotential, making the battery more practical. This study offers some insights into designing high-performance electrocatalysts for Li-O2 batteries through a combination of the 2D nanosheet architecture, oxygen vacancies, and surface electronic structure regulation.

中文翻译:

通过调节内部氧空位和外部Co 3+ / Co 2+比率来提高Co 3 O 4纳米片对Li-O 2电池的电催化活性

可充电的Li-O 2电池因其超高的比能量密度而被认为是最有前途的化学动力。然而,缓慢的氧气还原反应(ORR)和氧气释放反应(OER)导致高电势(〜1.5 V),较差的倍率能力甚至较短的循环寿命,严重地阻碍了它们的实际应用。本文中,我们提出了一种协同策略,通过调节内部氧空位和外部Co 3+ / Co 2+来提高Co 3 O 4纳米片对Li-O 2电池的电催化活性。可以通过拉曼光谱,X射线光电子能谱和X射线吸收近边缘结构光谱来确定比率。Operando X射线衍射和异位扫描电子显微镜用于探测放电产物的演变。与块状Co 3 O 4相比,被Co 3 O 4纳米片催化的细胞显示出更高的初始容量(〜24051.2 mAh g –1),更好的速率容量(8683.3 mAh g –1 @ 400 mA g –1)和循环稳定性(150循环@ 400 mA g –1),并降低过电势。电化学性能的大幅提高主要归因于结构化2D纳米片的协同效应,氧空位以及表面和内部之间的Co 3+ / Co 2+差异。此外,在电解液中添加LiI可以进一步降低过电势,从而使电池更加实用。这项研究通过结合2D纳米片结构,氧空位和表面电子结构调节,为设计用于Li-O 2电池的高性能电催化剂提供了一些见识。
更新日期:2017-08-30
down
wechat
bug