当前位置: X-MOL 学术Toxicol. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the ‘nano–bio’ interface
Toxicology Research ( IF 2.1 ) Pub Date : 2017-07-13 00:00:00 , DOI: 10.1039/c7tx00119c
Henry Lujan 1, 2, 3, 4 , Christie M. Sayes 1, 2, 3, 4
Affiliation  

Nanotechnology is advancing rapidly; many industries are utilizing nanomaterials because of their remarkable properties. As of 2017, over 1800 “nano-enabled products” (i.e. products that incorporate a nanomaterial feature and alter the product's performance) have been used to revolutionize pharmaceutical, transportation, and agriculture industries, just to name a few. As the number of nano-enabled products continues to increase, the risk of nanoparticle exposure to humans and the surrounding environment also increases. These exposures are usually classified as either intentional or unintentional. The increased rate of potential nanoparticle exposure to humans has required the field of ‘nanotoxicology’ to rapidly screen for key biological, biochemical, chemical, or physical signals, signatures, or markers associated with specific toxicological pathways of injury within in vivo, in vitro, and ex vivo models. One of the common goals of nanotoxicology research is to identify critical perturbed biological pathways that can lead to an adverse outcome. This review focuses on the most common toxicological pathways induced by nanoparticle exposure and provides insights into how these perturbations could aid in the development of nanomaterial specific adverse outcomes, inform nano-enabled product development, ensure safe manufacturing practices, promote intentional product use, and avoid environmental health hazards.

中文翻译:

纳米颗粒暴露后诱导的细胞毒理学途径:“纳米-生物”界面氧化应激的研究

纳米技术正在迅速发展。由于其卓越的性能,许多行业都在使用纳米材料。截至2017年,已经使用了1800多种“纳米技术产品”(具有纳米材料功能并改变产品性能的产品),彻底改变了制药,运输和农业行业。随着纳米产品的数量不断增加,纳米颗粒暴露于人类和周围环境的风险也随之增加。这些风险通常分为有意的无意的。潜在的纳米粒子暴露给人类的比率不断增加,需要“纳米毒理学”领域来快速筛选与体内体外体内特定损伤的特定毒理学途径相关的关键生物学,生化,化学或物理信号,标记或标志物,和离体模型。纳米毒理学研究的共同目标之一是确定可能导致不良后果的关键扰动性生物途径。这篇综述着重介绍了由纳米颗粒暴露引起的最常见的毒理学途径,并提供了有关这些扰动如何有助于纳米材料特定不良后果发展,为纳米产品开发提供信息,确保安全生产实践,促进发展的见解。有意使用产品,并避免对环境健康的危害。
更新日期:2017-08-29
down
wechat
bug