当前位置: X-MOL 学术Nanoscale Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication†
Nanoscale Horizons ( IF 9.7 ) Pub Date : 2017-06-01 00:00:00 , DOI: 10.1039/c7nh00067g
Fusheng Zhao 1, 2, 3, 4 , Md Masud Parvez Arnob 1, 2, 3, 4 , Oussama Zenasni 1, 2, 3, 4, 5 , Jingting Li 1, 2, 3, 4 , Wei-Chuan Shih 1, 2, 3, 4, 5
Affiliation  

We report the experimental observation and numerical modeling study of far-field plasmonic coupling (FFPC) in 2-dimensional polycrystalline plasmonic arrays consisting of “single crystalline” domains of a random size and orientation. Even though polycrystalline plasmonic arrays are routine products of low-cost nanosphere lithography (NSL), their FFPC behavior has not been well understood. Herein, FFPC observed from gold nanodisk (AuND) arrays fabricated using NSL appears, qualitatively, to be in keeping with that of highly regular nanoparticle arrays, where they induced cyclic modulations on the peak position and linewidth of the localized surface plasmon resonance (LSPR). Remarkable blue shifts as large as 1000 nm with nearly doubled linewidth were observed experimentally. Numerical modeling was systematically carried out and showed quantitative agreement with the experimental results. Using the modeling approach, the influences of array randomness and particle size on FFPC have been studied independently for the first time. Finally, two potential applications have been developed for FFPC-based LSPR tuning. Firstly, when AuND arrays are fabricated on flexible substrates, a novel transduction mechanism can be established between the LSPR peak position and the substrate strain. Owing to the far-field propagating nature, FFPC-based transduction can effectively extend the strain-tuning displacement range by an order of magnitude compared with those based on near-field coupling. Secondly, we show that FFPC leads to an LSPR peak within 1 μm for nanoporous gold disk arrays, which otherwise have a single particle LSPR peak beyond 1.5 μm. Such a significant FFPC-induced blue shift is critically important for compatibility with the use of silicon-based detectors.

中文翻译:

二维多晶等离子体阵列中的远场等离子体耦合可实现低成本低成本纳米制造的广泛可调性

我们报告了二维的多晶等离子体阵列中的远场等离子体耦合(FFPC)的实验观察和数值建模研究,该二维阵列由随机尺寸和方向的“单晶”域组成。尽管多晶等离子体阵列是低成本纳米球光刻(NSL)的常规产品,但它们的FFPC行为尚未得到很好的了解。在这里,从使用NSL制备的金纳米盘(AuND)阵列观察到的FFPC在质量上似乎与高度规则的纳米颗粒阵列保持一致,在那里它们诱导了局部表面等离子体激元共振(LSPR)的峰值位置和线宽上的循环调制。实验观察到高达1000 nm的显着蓝移,线宽几乎增加了一倍。系统地进行了数值模拟,并与实验结果定量吻合。使用建模方法,首次独立研究了阵列随机性和粒径对FFPC的影响。最后,针对基于FFPC的LSPR调整开发了两个潜在的应用程序。首先,当在柔性基板上制造AuND阵列时,可以在LSPR峰值位置和基板应变之间建立一种新型的转导机制。由于具有远场传播特性,与基于近场耦合的位移相比,基于FFPC的换能可以有效地将应变调谐位移范围扩展一个数量级。其次,我们表明FFPC导致纳米孔金磁盘阵列的LSPR峰在1μm以内,否则,其单个LSPR峰超过1.5μm。如此明显的FFPC引起的蓝移对于与使用基于硅的检测器的兼容性至关重要。
更新日期:2017-06-01
down
wechat
bug