当前位置: X-MOL 学术Metallomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proteomic and genetic analysis of S. cerevisiae response to soluble copper leads to improvement of antimicrobial function of cellulosic copper nanoparticles
Metallomics ( IF 3.4 ) Pub Date : 2017-08-18 00:00:00 , DOI: 10.1039/c7mt00147a
Xiaoqing Rong-Mullins 1, 2, 3, 4 , Matthew J. Winans 1, 2, 3, 4 , Justin B. Lee 1, 2, 3, 4 , Zachery R. Lonergan 1, 2, 3, 4 , Vincent A. Pilolli 1, 2, 3, 4 , Lyndsey M. Weatherly 1, 2, 3, 4 , Thomas W. Carmenzind 4, 5, 6, 7 , Lihua Jiang 4, 6, 6, 7, 8 , Jonathan R. Cumming 1, 2, 3, 4 , Gloria S. Oporto 2, 3, 4, 9 , Jennifer E. G. Gallagher 1, 2, 3, 4
Affiliation  

Copper (Cu) was used in antiquity to prevent waterborne and food diseases because, as a broad-spectrum antimicrobial agent, it generates reactive oxygen species, ROS. New technologies incorporating Cu into low-cost biodegradable nanomaterials built on cellulose, known as cellulosic cupric nanoparticles or c-CuNPs, present novel approaches to deliver Cu in a controlled manner to control microbial growth. We challenged strains of Saccharomyces cerevisiae to soluble Cu and c-CuNPs to evaluate the potential of c-CuNPs as antifungal agents. Cells exposed to c-CuNPs demonstrated greater sensitivity to Cu than cells exposed to soluble Cu, although Cu-resistant strains were more tolerant than Cu-sensitive strains of c-CuNP exposure. At the same level of growth inhibition, 157 µM c-CuNP led to the same internal Cu levels as did 400 CuSO4, offering evidence for alternative mechanisms of toxicity, perhaps through -arrestin dependent endocytosis, which was supported by flow cytometry and fluorescence microscopy of c-CuNPs distributed both on the cell surface and within the cytoplasm. Genes responsible for genetic variation to copper were mapped to the ZRT2 and the CUP1 loci. Through proteomic analyses, we found that the expression of other zinc (Zn) transporters increased in Cu-tolerant yeast compared to Cu-sensitive strains. Further, the addition of Zn at low levels increased the potency of c-CuNP to inhibit even the most Cu-tolerant yeast. Through unbiased systems biological approaches, we identified Zn as a critical component of yeast response to Cu and the addition of Zn increased potency of the c-CuNPs.

中文翻译:

酿酒酵母对可溶性铜的响应的蛋白质组学和遗传分析可改善纤维素铜纳米颗粒的抗菌功能

铜(Cu)在上古时代用于预防水传播和食物疾病,因为它作为一种广谱抗菌剂,会产生活性氧ROS。将铜结合到以纤维素为基础的低成本可生物降解纳米材料中的新技术,称为纤维素铜纳米颗粒或c-CuNPs,提出了以可控方式输送铜以控制微生物生长的新颖方法。我们向酿酒酵母菌株挑战可溶性铜和c-CuNPs,以评估c-CuNPs作为抗真菌剂的潜力。暴露于c-CuNPs的细胞比暴露于可溶性Cu的细胞表现出对Cu更高的敏感性,尽管与c-CuNP接触的Cu敏感菌株比对Cu-敏感的菌株具有更大的耐受性。在相同的生长抑制水平下,157 µM c-CuNP产生的内部Cu水平与400 CuSO4相同,可能通过β-arrestin依赖的内吞作用提供了其他毒性机制的证据,这受到流式细胞术和分布在细胞表面和细胞质内的c-CuNPs荧光显微镜的支持。负责铜遗传变异的基因被定位到ZRT2和CUP1基因座。通过蛋白质组学分析,我们发现与铜敏感菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可以提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效价。可能是通过α-arrestin依赖的内吞作用,这受到流式细胞仪和分布在细胞表面和细胞质内的c-CuNPs荧光显微镜的支持。负责铜遗传变异的基因被定位到ZRT2和CUP1基因座。通过蛋白质组学分析,我们发现与铜敏感菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可以提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效价。可能是通过α-arrestin依赖的内吞作用,这受到流式细胞仪和分布在细胞表面和细胞质内的c-CuNPs荧光显微镜的支持。负责铜遗传变异的基因被定位到ZRT2和CUP1基因座。通过蛋白质组学分析,我们发现与铜敏感菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可以提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效价。流式细胞术和分布在细胞表面和细胞质内的c-CuNPs的荧光显微镜技术为这一研究提供了支持。负责铜遗传变异的基因被定位到ZRT2和CUP1基因座。通过蛋白质组学分析,我们发现与铜敏感菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可以提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效价。流式细胞术和分布在细胞表面和细胞质内的c-CuNPs的荧光显微镜技术为这一研究提供了支持。负责铜遗传变异的基因被定位到ZRT2和CUP1基因座。通过蛋白质组学分析,我们发现与铜敏感菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可以提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效价。我们发现与耐铜菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可以提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效价。我们发现与耐铜菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可以提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效价。
更新日期:2017-08-18
down
wechat
bug