当前位置: X-MOL 学术Environ. Sci.: Water Res. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Integrated Microbial Electrolysis-Anaerobic Digestion Process Combined with Pretreatment of Wastewater Solids to Improve Hydrogen Production
Environmental Science: Water Research & Technology ( IF 5 ) Pub Date : 2017-08-17 00:00:00 , DOI: 10.1039/c7ew00189d
Jeff R. Beegle 1, 2, 3, 4, 5 , Abhijeet P. Borole 1, 2, 3, 4, 5
Affiliation  

A combined anaerobic digestion (AD) and microbial electrolysis cell (MEC) system, named here as ADMEC, was investigated to evaluate the energy recovery from pretreated wastewater solids. Alkaline and thermal hydrolysis pretreatment methods increased the solubility of organic compounds present in the raw solids by 25% and 20%, respectively. The soluble phase from pretreatment was separated and used for microbial electrolysis, whereas the insoluble fraction was fed into semi-continuous digesters. The digester effluent was later utilized as a second MEC substrate. The pretreatment had variable effects on AD and MEC performance. The methane content in AD biogas was higher in pretreated groups, 78.29 ± 2.89% and 73.2 ± 1.79%, for alkaline and thermal, than the control, 50.26 ± 0.53%, but the overall biogas production rates were lower than the control, 20 and 30 mL CH4/gCOD*d for alkaline and thermal compared to 80 mL CH4/gCOD*d. The effluent streams from thermally pretreated digesters were the best substrate for microbial electrolysis, in terms of hydrogen production and efficiency. The MECs produced 1.7 ± 0.2 L- H2/L-day, 0.3 ± 0.1 L- H2/L-day, and 0.29 ± 0.1 L- H2//L-day, for thermal, alkaline, and control reactors. The productivity was lower compared to acetate and propionate controls, which yielded 5.79 ± 0.03 L- H2/L-day and 3.49 ± 0.10 L- H2/L-day, respectively. The pretreatment solubilized fractions were not ideal substrates for microbial electrolysis. A chemical oxygen demand (COD) mass balance showed that pretreatment shifts the electron flux away from methane and biomass sinks towards hydrogen production.

中文翻译:

微生物电解-厌氧消化综合处理与废水固体预处理相结合以提高产氢量

研究了厌氧消化(AD)和微生物电解池(MEC)的组合系统,这里称为ADMEC,以评估预处理废水中的能量回收率。碱性和热水解预处理方法分别将原始固体中存在的有机化合物的溶解度提高了25%和20%。分离来自预处理的可溶相并用于微生物电解,而将不溶级分送入半连续蒸煮器中。消化池出水后来被用作第二个MEC底物。预处理对AD和MEC性能有不同的影响。预处理组的AD沼气中的甲烷含量较高,碱性和热态甲烷分别为78.29±2.89%和73.2±1.79%,而对照组为50.26±0.53%,但总沼气生产率低于对照组 相比于80 mL CH4 / gCOD * d,碱性和热分别为20和30 mL CH4 / gCOD * d。就制氢和效率而言,经过热处理的蒸煮器的出水是微生物电解的最佳基质。对于热,碱和控制反应器,MEC产生1.7±0.2 L-H2 / L-天,0.3±0.1 L-H2 / L-天和0.29±0.1 L-H2 // L-天。与乙酸盐和丙酸盐对照相比,生产率较低,后者分别产生5.79±0.03 L-H2 / L-天和3.49±0.10 L-H2 / L-天。预处理的增溶级分不是微生物电解的理想底物。化学需氧量(COD)的质量平衡表明,预处理会使电子通量从甲烷和生物质汇向氢生产转移。就制氢和效率而言,经过热处理的蒸煮器的出水是微生物电解的最佳基质。对于热,碱和控制反应器,MEC产生1.7±0.2 L-H2 / L-天,0.3±0.1 L-H2 / L-天和0.29±0.1 L-H2 // L-天。与乙酸盐和丙酸盐对照相比,生产率较低,后者分别产生5.79±0.03 L-H2 / L-天和3.49±0.10 L-H2 / L-天。预处理的增溶级分不是微生物电解的理想底物。化学需氧量(COD)的质量平衡表明,预处理会使电子通量从甲烷和生物质汇向氢生产转移。就制氢和效率而言,经过热处理的蒸煮器的出水是微生物电解的最佳基质。对于热,碱和控制反应器,MEC产生1.7±0.2 L-H2 / L-天,0.3±0.1 L-H2 / L-天和0.29±0.1 L-H2 // L-天。与乙酸盐和丙酸盐对照相比,生产率较低,后者分别产生5.79±0.03 L-H2 / L-天和3.49±0.10 L-H2 / L-天。预处理的增溶级分不是微生物电解的理想底物。化学需氧量(COD)的质量平衡表明,预处理会使电子通量从甲烷和生物质汇向氢生产转移。对于热反应器,碱性反应器和控制反应器,MEC产生1.7±0.2 L-H2 / L-天,0.3±0.1 L-H2 / L-天和0.29±0.1 L-H2 // L-天。与乙酸盐和丙酸盐对照相比,生产率较低,后者分别产生5.79±0.03 L-H2 / L-天和3.49±0.10 L-H2 / L-天。预处理的增溶级分不是微生物电解的理想底物。化学需氧量(COD)的质量平衡表明,预处理会使电子通量从甲烷和生物质汇向氢生产转移。对于热,碱和控制反应器,MEC产生1.7±0.2 L-H2 / L-天,0.3±0.1 L-H2 / L-天和0.29±0.1 L-H2 // L-天。与乙酸盐和丙酸盐对照相比,生产率较低,后者分别产生5.79±0.03 L-H2 / L-天和3.49±0.10 L-H2 / L-天。预处理的增溶级分不是微生物电解的理想底物。化学需氧量(COD)的质量平衡表明,预处理会使电子通量从甲烷和生物质汇向氢生产转移。预处理的增溶级分不是微生物电解的理想底物。化学需氧量(COD)的质量平衡表明,预处理会使电子通量从甲烷和生物质汇向氢生产转移。预处理的增溶级分不是微生物电解的理想底物。化学需氧量(COD)的质量平衡表明,预处理会使电子通量从甲烷和生物质汇向氢生产转移。
更新日期:2017-08-17
down
wechat
bug