当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All-electric control of donor nuclear spin qubits in silicon
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2017-08-14 , DOI: 10.1038/nnano.2017.154
Anthony J. Sigillito , Alexei M. Tyryshkin , Thomas Schenkel , Andrew A. Houck , Stephen A. Lyon

The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems1,2 that are potentially useful for applications in quantum information3 and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed4,5 but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets6. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions7 can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors8.



中文翻译:

硅中供体核自旋量子位的全电控制

硅中供体杂质的电子和核自旋自由度形成超相干的两级体系1,2,这对于量子信息中的应用可能是有用的3并且本质上与工业半导体加工兼容。但是,由于自旋比较小,因此核自旋比电子自旋更难操纵,通常被认为对于量子信息处理来说太慢了。此外,尽管交流磁场是驱动自旋跃迁和实现量子门的最自然选择,但它们很难在空间上限制在单个施主的水平,因此需要其他方法。近年来,已经提出了对供体自旋量子位进行全电控制的方案4,5,但尚未有实验证明。在这里,我们演示了一种可扩展的全电方法,用于控制中性31 P和75由于施主核自旋在硅中。使用共面光子带隙谐振器,我们仅通过使用施主结合电子作为量子换能器,而仅使用电场来驱动核自旋上的拉比振荡,这非常符合单分子磁体6的最新研究精神。电场限制带来主要优势,例如低功耗要求,更高的量子位密度和更快的栅极时间。另外,这种方法可以驱动核自旋量子比特以其共振频率或以其第一子谐波驱动,从而降低了对设备带宽的需求。双量子跃迁7也可以驱动,可以轻松访问我们系统的全部计算功能,并可以方便地使用75个As供体8实施基于核自旋的qudits 。

更新日期:2017-09-06
down
wechat
bug