当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Bioprinting for Cartilage and Osteochondral Tissue Engineering
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2017-08-14 , DOI: 10.1002/adhm.201700298
Andrew C. Daly 1, 2, 3 , Fiona E. Freeman 1, 2, 3 , Tomas Gonzalez-Fernandez 1, 2, 3 , Susan E. Critchley 1, 2, 3 , Jessica Nulty 1, 2, 3 , Daniel J. Kelly 1, 2, 3, 4
Affiliation  

Significant progress has been made in the field of cartilage and bone tissue engineering over the last two decades. As a result, there is real promise that strategies to regenerate rather than replace damaged or diseased bones and joints will one day reach the clinic however, a number of major challenges must still be addressed before this becomes a reality. These include vascularization in the context of large bone defect repair, engineering complex gradients for bone‐soft tissue interface regeneration and recapitulating the stratified zonal architecture present in many adult tissues such as articular cartilage. Tissue engineered constructs typically lack such spatial complexity in cell types and tissue organization, which may explain their relatively limited success to date. This has led to increased interest in bioprinting technologies in the field of musculoskeletal tissue engineering. The additive, layer by layer nature of such biofabrication strategies makes it possible to generate zonal distributions of cells, matrix and bioactive cues in 3D. The adoption of biofabrication technology in musculoskeletal tissue engineering may therefore make it possible to produce the next generation of biological implants capable of treating a range of conditions. Here, advances in bioprinting for cartilage and osteochondral tissue engineering are reviewed.

中文翻译:

用于软骨和骨软骨组织工程的3D生物打印

在过去的二十年中,软骨和骨组织工程领域取得了重大进展。结果,确实有希望,有一天再生而不是替换受损或患病的骨头和关节的策略将在临床上出现,但是,在实现这一目标之前,仍然必须应对许多重大挑战。其中包括大面积骨缺损修复的血管形成,工程化复杂的梯度以实现骨软组织界面再生,以及重塑许多成人组织(例如关节软骨)中存在的分层带状结构。组织工程构建体通常在细胞类型和组织组织方面缺乏这种空间复杂性,这可能解释了迄今为止它们相对有限的成功。这导致肌肉骨骼组织工程领域对生物打印技术的兴趣增加。这种生物制造策略的逐层添加特性使得可以在3D模式下生成细胞,基质和生物活性线索的区域分布。因此,在骨骼肌肉组织工程中采用生物加工技术可以生产出能够治疗多种疾病的下一代生物植入物。在这里,综述了软骨和骨软骨组织工程的生物打印技术的进展。因此,在骨骼肌肉组织工程中采用生物加工技术可以生产出能够治疗多种疾病的下一代生物植入物。在这里,综述了软骨和骨软骨组织工程的生物打印技术的进展。因此,在骨骼肌肉组织工程中采用生物加工技术可以生产出能够治疗多种疾病的下一代生物植入物。在这里,综述了软骨和骨软骨组织工程的生物打印技术的进展。
更新日期:2017-08-14
down
wechat
bug