当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale Heterogeneity of Multilayered Si Anodes with Embedded Nanoparticle Scaffolds for Li‐Ion Batteries
Advanced Science ( IF 15.1 ) Pub Date : 2017-08-08 , DOI: 10.1002/advs.201700180
Marta Haro 1 , Vidyadhar Singh 1 , Stephan Steinhauer 1 , Evropi Toulkeridou 1 , Panagiotis Grammatikopoulos 1 , Mukhles Sowwan 1
Affiliation  

A new approach on the synthesis of Si anodes for Li‐ion batteries is reported, combining advantages of both nanoparticulated and continuous Si films. A multilayered configuration prototype is proposed, comprising amorphous Si arranged in nanostructured, mechanically heterogeneous films, interspersed with Ta nanoparticle scaffolds. Particular structural features such as increased surface roughness, nanogranularity, and porosity are dictated by the nanoparticle scaffolds, boosting the lithiation process due to fast Li diffusion and low electrode polarization. Consequently, a remarkable charge/discharge speed is reached with the proposed anode, in the order of minutes (1200 mAh g−1 at 10 C). Moreover, nanomechanical heterogeneity self‐limits the capacity at intermediate charge/discharge rates; as a consequence, exceptional cycleability is observed at 0.5 C, with 100% retention over 200 cycles with 700 mAh g−1. Higher capacity can be obtained when the first cycles are performed at 0.2 C, due to the formation of microislands, which facilitate the swelling of the active Si. This study indicates a method to tune the mechanical, morphological, and electrochemical properties of Si electrodes via engineering nanoparticle scaffolds, paving the way for a novel design of nanostructured Si electrodes for high‐performance energy storage devices.

中文翻译:

锂离子电池嵌入式纳米颗粒支架的多层Si阳极的纳米异质性

报道了一种用于锂离子电池的硅阳极合成的新方法,该方法结合了纳米颗粒硅膜和连续硅膜的优点。提出了多层构造原型,其包括布置在纳米结构的机械异质膜中的无定形硅,其间散布有Ta纳米颗粒支架。特殊的结构特征,例如增加的表面粗糙度,纳米颗粒度和孔隙度,是由纳米颗粒支架决定的,由于锂的快速扩散和低电极极化,促进了锂化过程。因此,采用建议的阳极达到了显着的充电/放电速度,大约为几分钟(1200 mAh g -1在10 C)。此外,纳米机械异质性会自我限制中等充放电速率下的容量;结果,在0.5 C下观察到优异的循环能力,在700 mAh g -1的200个循环中具有100%的保留。当第一周期在0.2 C下执行时,由于微岛的形成,可以获得更高的容量,这有利于活性Si的溶胀。这项研究表明了一种通过工程纳米粒子支架来调节硅电极的机械,形态和电化学性能的方法,从而为用于高性能储能装置的纳米结构硅电极的新颖设计铺平了道路。
更新日期:2017-08-08
down
wechat
bug