当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement
Nature Physics ( IF 19.6 ) Pub Date : 2017-05-15 00:00:00 , DOI: 10.1038/nphys4118
Yiqiu Ma , Haixing Miao , Belinda Heyun Pang , Matthew Evans , Chunnong Zhao , Jan Harms , Roman Schnabel , Yanbei Chen

In continuously monitored systems the standard quantum limit is given by the trade-off between shot noise and back-action noise. In gravitational-wave detectors, such as Advanced LIGO, both contributions can be simultaneously squeezed in a broad frequency band by injecting a spectrum of squeezed vacuum states with a frequency-dependent squeeze angle. This approach requires setting up an additional long baseline, low-loss filter cavity in a vacuum system at the detector’s site. Here, we show that the need for such a filter cavity can be eliminated, by exploiting Einstein–Podolsky–Rosen (EPR)-entangled signals and idler beams. By harnessing their mutual quantum correlations and the difference in the way each beam propagates in the interferometer, we can engineer the input signal beam to have the appropriate frequency-dependent conditional squeezing once the out-going idler beam is detected. Our proposal is appropriate for all future gravitational-wave detectors for achieving sensitivities beyond the standard quantum limit.

中文翻译:

通过EPR缠结检测引力波超出标准量子极限的建议

在连续监控的系统中,标准量子极限由散粒噪声和后作用噪声之间的折衷给出。在重力波检测器(如Advanced LIGO)中,可以通过注入随频率变化的挤压角度的挤压真空状态频谱,在宽频带中同时挤压两种贡献。这种方法需要在检测器现场的真空系统中设置一个额外的长基线,低损耗过滤器腔。在这里,我们表明,通过利用爱因斯坦-波多尔斯基-罗森(EPR)纠缠的信号和惰轮束,可以消除对这种滤波器腔的需要。通过利用它们的相互量子相关性和每束光束在干涉仪中传播方式的差异,一旦检测到输出的惰轮束,我们就可以对输入信号束进行工程设计,使其具有适当的频率相关的条件压缩。我们的建议适用于所有未来的重力波探测器,以实现超出标准量子极限的灵敏度。
更新日期:2017-08-02
down
wechat
bug