当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A spatially localized architecture for fast and modular DNA computing
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2017-07-24 00:00:00 , DOI: 10.1038/nnano.2017.127
Gourab Chatterjee , Neil Dalchau , Richard A. Muscat , Andrew Phillips , Georg Seelig

Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.

中文翻译:

用于快速模块化DNA计算的空间局部化架构

细胞利用空间限制来控制和加速酶级联反应和信号网络中的信息流。基于合成硅的电路类似地依赖于空间约束来处理信息。在这里,我们表明空间组织可以成为克服工程分子电路中速度和模块性局限性的类似强大设计原则。我们通过在DNA折纸上空间排列反应性DNA发夹来创建逻辑门和信号传输线。跨不同长度和方向的传输线演示了信号传播,逻辑门模块化组合到电路中,确立了我们方法的通用性。因为反应优先发生在邻居之间,所以相同的DNA发夹可以在电路中重复使用。与具有可扩散组件的电路相比,电路元件的共定位可将计算时间从数小时减少至数分钟。详细的计算模型可实现预测性电路设计。我们预计我们的方法将为未来的分子控制电路设计带来空间限制。
更新日期:2017-09-06
down
wechat
bug