当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution
Journal of Power Sources ( IF 9.2 ) Pub Date : 2017-07-11 , DOI: 10.1016/j.jpowsour.2017.07.025
Albert Mufundirwa , George F. Harrington , Břetislav Smid , Benjamin V. Cunning , Kazunari Sasaki , Stephen M. Lyth

Due to the high cost and limited availability of platinum, the development of non-platinum-group metals (non-PGM) catalysts is of paramount importance. A promising alternative to Pt are Fe-N-C-based materials. Here we present the synthesis, characterization and electrochemistry of a template-free nitrogen-doped carbon foam, impregnated with iron. This low-cost and gram-scale method results in materials with micron-scale pore size and large surface area (1600 m2g-1). When applied as an oxygen reduction reaction (ORR) electrocatalyst in alkaline solution, the Fe-N-C foams display extremely high initial activity, slightly out-performing commercially available non-PGM catalysts (NCP-2000, Pajarito Powder). The load-cycle durability in alkaline solution is investigated, and the performance steadily degrades over 60,000 potential cycles, whilst the commercial catalyst is remarkably stable. The post-operation catalyst microstructure is elucidated by transmission electron microscopy (TEM), to provide insight into the degradation processes. The resulting images suggest that potential cycling leads to leaching of atomically dispersed Fe-N2/4 sites in all the catalysts, whereas encapsulated iron nanoparticles are protected.



中文翻译:

不含模板的Fe-NC泡沫在碱性溶液中电化学还原氧气的耐久性

由于铂的高成本和有限的可用性,开发非铂族金属(non-PGM)催化剂至关重要。Fe-NC基材料是一种有希望替代Pt的材料。在这里,我们介绍了无模板,掺氮铁碳泡沫的合成,表征和电化学。这种低成本,克级的方法产生的材料具有微米级的孔径和大的表面积(1600 m 2 g -1)。当在碱性溶液中用作氧还原反应(ORR)电催化剂时,Fe-NC泡沫材料显示出极高的初始活性,性能稍好于市售的非PGM催化剂(NCP-2000,Pajarito Powder)。研究了在碱性溶液中的负载循环耐久性,其性能在超过60,000个潜在循环中稳定下降,而商用催化剂则非常稳定。透射电子显微镜(TEM)阐明了操作后的催化剂微观结构,以深入了解降解过程。所得图像表明,潜在的循环导致所有催化剂中原子分散的Fe-N 2/4位的浸出,而封装的铁纳米颗粒受到保护。

更新日期:2017-07-11
down
wechat
bug