当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science
Materials Today ( IF 24.2 ) Pub Date : 2017-09-01 , DOI: 10.1016/j.mattod.2017.06.001
Julie Villanova , Rémi Daudin , Pierre Lhuissier , David Jauffrès , Siyu Lou , Christophe L. Martin , Sylvain Labouré , Rémi Tucoulou , Gema Martínez-Criado , Luc Salvo

The performance of many advanced materials is determined by the arrangement of their nanostructure which requires ever more precise characterization. In this respect, X-ray computed tomography (CT) is a powerful technique to investigate material properties as it provides non-destructive direct access to three-dimensional morphology with nanoscale resolution. However, challenges remain in clearly understanding physical mechanisms involved during their processing in real time and real conditions. So far, beam and sample stabilities, effective spatial resolution and tomography scan time have hindered the development of nanoscale in situ 4D imaging (3D plus time), and especially at high temperatures. Here, we report on the development of fast X-ray nanotomography at temperatures up to 700°C with an unprecedented combination of nanometer pixel size and acquisition times of a few tens of seconds. The great potential of the method is demonstrated by following the early stages of two thermally driven phenomena: neck curvature evolution in sintering and nucleation of liquid droplets in light alloys. The reported real time observations will benefit the fundamental understanding of the underlying physics and provide useful data to build new models. The novel aspects of this synchrotron based technique offer a powerful imaging tool for a wide variety of heterogeneous nanoscale dynamics in materials and open new perspectives for the investigation of advanced materials under realistic conditions.

中文翻译:

快速原位 3D 纳米成像:材料科学动态表征的新工具

许多先进材料的性能取决于其纳米结构的排列,这需要更精确的表征。在这方面,X 射线计算机断层扫描 (CT) 是一种研究材料特性的强大技术,因为它提供了对具有纳米级分辨率的三维形态的非破坏性直接访问。然而,在实时和真实条件下清楚地理解它们处理过程中涉及的物理机制方面仍然存在挑战。到目前为止,光束和样品的稳定性、有效的空间分辨率和断层扫描时间阻碍了纳米级原位 4D 成像(3D 加时间)的发展,尤其是在高温下。这里,我们报告了在高达 700°C 的温度下快速 X 射线纳米断层扫描的发展,具有前所未有的纳米像素尺寸和几十秒采集时间的组合。通过遵循两种热驱动现象的早期阶段证明了该方法的巨大潜力:烧结中的颈部曲率演变和轻合金中液滴的成核。报告的实时观测将有助于对基础物理的基本理解,并为构建新模型提供有用的数据。这种基于同步加速器的技术的新颖之处为材料中的各种异质纳米级动力学提供了强大的成像工具,并为在现实条件下研究先进材料开辟了新的视角。通过遵循两种热驱动现象的早期阶段证明了该方法的巨大潜力:烧结中的颈部曲率演变和轻合金中液滴的成核。报告的实时观测将有助于对基础物理的基本理解,并为构建新模型提供有用的数据。这种基于同步加速器的技术的新颖之处为材料中的各种异质纳米级动力学提供了强大的成像工具,并为在现实条件下研究先进材料开辟了新的视角。通过遵循两种热驱动现象的早期阶段证明了该方法的巨大潜力:烧结中的颈部曲率演变和轻合金中液滴的成核。报告的实时观测将有助于对基础物理的基本理解,并为构建新模型提供有用的数据。这种基于同步加速器的技术的新颖之处为材料中的各种异质纳米级动力学提供了强大的成像工具,并为在现实条件下研究先进材料开辟了新的视角。报告的实时观测将有助于对基础物理的基本理解,并为构建新模型提供有用的数据。这种基于同步加速器的技术的新颖之处为材料中的各种异质纳米级动力学提供了强大的成像工具,并为在现实条件下研究先进材料开辟了新的视角。报告的实时观测将有助于对基础物理的基本理解,并为构建新模型提供有用的数据。这种基于同步加速器的技术的新颖之处为材料中的各种异质纳米级动力学提供了强大的成像工具,并为在现实条件下研究先进材料开辟了新的视角。
更新日期:2017-09-01
down
wechat
bug