当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning quantum nonlocal effects in graphene plasmonics
Science ( IF 56.9 ) Pub Date : 2017-06-08 , DOI: 10.1126/science.aan2735
Mark B. Lundeberg 1 , Yuanda Gao 2 , Reza Asgari 3, 4 , Cheng Tan 2 , Ben Van Duppen 5 , Marta Autore 6 , Pablo Alonso-González 6, 7 , Achim Woessner 1 , Kenji Watanabe 8 , Takashi Taniguchi 8 , Rainer Hillenbrand 9, 10 , James Hone 2 , Marco Polini 11 , Frank H. L. Koppens 1, 12
Affiliation  

Plasmons probe the quantum response Electronic systems are typically considered as classical Fermi liquids, and the quantum mechanical interactions and processes are usually only accessed at very low temperatures and high magnetic fields. Lundeberg et al. used tunable plasmons to probe the quantum response of the electron gas of graphene (see the Perspective by Basov and Fogler). They studied shape deformations of the Fermi surface during a plasmon oscillation, as well as many-body electronic effects. Science, this issue p. 187; see also p. 132 Tunable plasmons are used to probe the quantum properties of an electronic system. The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials’ electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.

中文翻译:

调节石墨烯等离子体中的量子非局域效应

等离子体探测量子响应电子系统通常被认为是经典的费米液体,量子力学相互作用和过程通常只能在非常低的温度和高磁场下进行。伦德伯格等人。使用可调等离子体来探测石墨烯电子气的量子响应(参见 Basov 和 Fogler 的观点)。他们研究了等离子体振荡期间费米表面的形状变形以及多体电子效应。科学,这个问题 p。187; 另见第。132 可调谐等离子体用于探测电子系统的量子特性。电子系统对空间中快速变化的电动力场的响应具有独特的特征,包括精致的空间非局域性。这可以揭示材料的电子结构,而这些电子结构在使用逐渐变化的场的标准探针中是不可见的。在这里,我们使用石墨烯等离子体,以接近电子费米速度的极慢速度传播,来探测石墨烯电子液体的非局域响应。近场成像实验揭示了与无质量狄拉克电子气的完整量子描述的无参数匹配,其中涉及三种类型的非局域量子效应:单粒子速度匹配、相互作用增强的费米速度和相互作用降低的可压缩性. 我们的实验方法可以确定电子系统的完整时空响应。以接近电子费米速度的极慢速度传播,以探测石墨烯电子液体的非局域响应。近场成像实验揭示了与无质量狄拉克电子气的完整量子描述的无参数匹配,其中涉及三种类型的非局域量子效应:单粒子速度匹配、相互作用增强的费米速度和相互作用降低的可压缩性. 我们的实验方法可以确定电子系统的完整时空响应。以接近电子费米速度的极慢速度传播,以探测石墨烯电子液体的非局域响应。近场成像实验揭示了与无质量狄拉克电子气的完整量子描述的无参数匹配,其中涉及三种类型的非局域量子效应:单粒子速度匹配、相互作用增强的费米速度和相互作用降低的可压缩性. 我们的实验方法可以确定电子系统的完整时空响应。单粒子速度匹配、相互作用增强的费米速度和相互作用减少的可压缩性。我们的实验方法可以确定电子系统的完整时空响应。单粒子速度匹配、相互作用增强的费米速度和相互作用减少的可压缩性。我们的实验方法可以确定电子系统的完整时空响应。
更新日期:2017-06-08
down
wechat
bug