当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2017-05-17 00:00:00 , DOI: 10.1021/jacs.7b02290
Xingchen Jiao 1 , Zongwei Chen 1 , Xiaodong Li 1 , Yongfu Sun 1 , Shan Gao 1 , Wensheng Yan 1 , Chengming Wang 1 , Qun Zhang 1 , Yue Lin 1 , Yi Luo 1 , Yi Xie 1
Affiliation  

The effect of defects on electron–hole separation is not always clear and is sometimes contradictory. Herein, we initially built clear models of two-dimensional atomic layers with tunable defect concentrations, and hence directly disclose the defect type and distribution at atomic level. As a prototype, defective one-unit-cell ZnIn2S4 atomic layers are successfully synthesized for the first time. Aberration-corrected scanning transmission electron microscopy directly manifests their distinct zinc vacancy concentrations, confirmed by positron annihilation spectrometry and electron spin resonance analysis. Density-functional calculations reveal that the presence of zinc vacancies ensures higher charge density and efficient carrier transport, verified by ultrafast photogenerated electron transfer time of ∼15 ps from the conduction band of ZnIn2S4 to the trap states. Ultrafast transient absorption spectroscopy manifests the higher zinc vacancy concentration that allows for ∼1.7-fold increase in average recovery lifetime, confirmed by surface photovoltage spectroscopy and PL spectroscopy analysis, which ensures promoted carrier separation rates. As a result, the one-unit-cell ZnIn2S4 layers with rich zinc vacancies exhibit a carbon monoxide formation rate of 33.2 μmol g–1 h–1, roughly 3.6 times higher than that of the one-unit-cell ZnIn2S4 layers with poor zinc vacancies, while the former’s photocatalytic activity shows negligible loss after 24 h photocatalysis. This present work uncovers the role of defects in affecting electron–hole separation at atomic level, opening new opportunities for achieving highly efficient solar CO2 reduction performances.

中文翻译:

缺陷介导的单孔ZnIn 2 S 4层中的电子-孔分离,可增强太阳能驱动的CO 2还原

缺陷对电子-空穴分离的影响并不总是清楚的,有时是矛盾的。在本文中,我们最初建立了具有可调缺陷浓度的二维原子层的清晰模型,因此直接公开了原子级的缺陷类型和分布。作为原型,有缺陷的单体电池ZnIn 2 S 4原子层首次成功合成。像差校正的扫描透射电子显微镜直接显示出它们独特的锌空位浓度,这通过正电子an没光谱法和电子自旋共振分析得以证实。密度泛函计算表明,锌空位的存在可确保更高的电荷密度和有效的载流子传输,这已由距ZnIn 2 S 4的导带约15 ps的超快光生电子转移时间验证陷阱状态。超快速瞬态吸收光谱法显示出较高的锌空位浓度,可使平均回收寿命增加约1.7倍,这已通过表面光电压光谱法和PL光谱法分析得到证实,这可确保提高的载流子分离率。结果,具有大量锌空位的单晶胞ZnIn 2 S 4层的一氧化碳形成速率为33.2μmolg –1 h –1,大约比单晶胞ZnIn 2的高3.6倍。小号4层中锌空位较差,而前者的光催化活性在光催化24小时后显示损失可忽略不计。这项工作揭示了缺陷在原子水平上影响电子-空穴分离的作用,为实现高效的太阳能CO 2还原性能开辟了新的机会。
更新日期:2017-05-24
down
wechat
bug