当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2017-04-26 00:00:00 , DOI: 10.1021/acs.accounts.7b00048
Binbin Luo 1 , John W. Smith 1 , Zihao Ou 1 , Qian Chen 1
Affiliation  

For decades, one of the overarching objectives of self-assembly science has been to define the rules necessary to build functional, artificial materials with rich and adaptive phase behavior from the bottom-up. To this end, the computational and experimental efforts of chemists, physicists, materials scientists, and biologists alike have built a body of knowledge that spans both disciplines and length scales. Indeed, today control of self-assembly is extending even to supramolecular and molecular levels, where crystal engineering and design of porous materials are becoming exciting areas of exploration. Nevertheless, at least at the nanoscale, there are many stones yet to be turned. While recent breakthroughs in nanoparticle (NP) synthesis have amassed a vast library of nanoscale building blocks, NP–NP interactions in situ remain poorly quantified, in large part due to technical and theoretical impediments. While increasingly many applications for self-assembled architectures are being demonstrated, it remains difficult to predict-and therefore engineer-the pathways by which these structures form. Here, we describe how investigations using liquid-phase transmission electron microscopy (TEM) have begun to play a role in pursuing some of these long-standing questions of fundamental and far-reaching interest.

中文翻译:

使用液相透射电子显微镜量化各向异性纳米粒子的自组装行为

几十年来,自组装科学的总体目标之一就是定义自下而上构建具有丰富且自适应相行为的功能性人造材料所必需的规则。为此,化学家,物理学家,材料科学家和生物学家的计算和实验努力都建立了涵盖学科和长度尺度的知识体系。的确,如今,自组装的控制甚至扩展到超分子和分子水平,在该水平上晶体工程和多孔材料的设计正成为令人兴奋的探索领域。然而,至少在纳米尺度上,仍有许多宝石需要转弯。尽管纳米粒子(NP)合成技术的最新突破已经积累了庞大的纳米级构建基库,但是NP-NP原位相互作用仍然难以量化,很大程度上是由于技术和理论上的障碍。尽管展示了越来越多的自组装体系结构应用程序,但仍然难以预测和构造这些结构形成的途径,因此也很难对其进行工程设计。在这里,我们描述了使用液相透射电子显微镜(TEM)进行的研究如何开始在追求这些长期存在的,具有根本性和深远意义的问题中发挥作用。
更新日期:2017-04-26
down
wechat
bug