当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pore-Scale Geochemical Reactivity Associated with CO2 Storage: New Frontiers at the Fluid–Solid Interface
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2017-03-31 00:00:00 , DOI: 10.1021/acs.accounts.7b00019
Catherine Noiriel 1 , Damien Daval 2
Affiliation  

The reactivity of carbonate and silicate minerals is at the heart of porosity and pore geometry changes in rocks injected with CO2, which ultimately control the evolution of flow and transport properties of fluids in porous and/or fractured geological reservoirs. Modeling the dynamics of CO2–water–rock interactions is challenging because of the resulting large geochemical disequilibrium, the reservoir heterogeneities, and the large space and time scales involved in the processes. In particular, there is a lack of information about how the macroscopic properties of a reservoir, e.g., the permeability, will evolve as a result of geochemical reactions at the molecular scale. Addressing this point requires a fundamental understanding of how the microstructures influence the macroscopic properties of rocks. The pore scale, which ranges from a few nanometers to centimeters, has stood out as an essential scale of observation of geochemical processes in rocks. Transport or surface reactivity limitations due to the pore space architecture, for instance, are best described at the pore scale itself. It can be also considered as a mesoscale for aggregating and increasing the gain of fundamental understanding of microscopic interfacial processes. Here we focus on the potential application of a combination of physicochemical measurements coupled with nanoscale and microscale imaging techniques during laboratory experiments to improve our understanding of the physicochemical mechanisms that occur at the fluid–solid interface and the dynamics of the coupling between the geochemical reactions and flow and transport modifications at the pore scale. Imaging techniques such as atomic force microscopy, vertical scanning interferometry, focused ion beam transmission electron microscopy, and X-ray microtomography, are ideal for investigating the reactivity dynamics of these complex materials.

中文翻译:

与CO 2储存相关的孔隙度地球化学反应性:流体-固体界面的新前沿

碳酸盐和硅酸盐矿物的反应性是孔隙度的核心,注入CO 2的岩石中孔隙几何形状的变化最终控制了多孔和/或压裂地质储层中流体的流动和输运特性。模拟CO 2的动力学水-岩石相互作用是具有挑战性的,因为由此导致了巨大的地球化学失衡,储层非均质性以及过程中涉及的大量时空尺度。特别地,缺乏关于储集层的宏观特性(例如渗透率)如何由于分子规模的地球化学反应而演化的信息。解决这一点需要对微观结构如何影响岩石的宏观特性有基本的了解。孔径范围从几纳米到几厘米不等,是观察岩石中地球化学过程必不可少的尺度。例如,由于孔隙空间结构而导致的运输或表面反应性限制最好在孔隙尺度本身进行描述。它也可以被认为是聚集和增加对微观界面过程的基本理解的中尺度。在这里,我们重点介绍在实验室实验中将物理化学测量与纳米级和微米级成像技术相结合的潜在应用,以加深我们对流固界面处发生的物理化学机制以及地球化学反应与地表之间耦合动力学的理解。孔尺度上的流动和运输变化。成像技术,例如原子力显微镜,垂直扫描干涉仪,聚焦离子束透射电子显微镜和X射线显微断层照相术,是研究这些复杂材料的反应动力学的理想选择。
更新日期:2017-03-31
down
wechat
bug