当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications
Chemical Reviews ( IF 62.1 ) Pub Date : 2017-03-08 00:00:00 , DOI: 10.1021/acs.chemrev.6b00446
Jan Hermann 1 , Robert A. DiStasio 2 , Alexandre Tkatchenko 1, 3
Affiliation  

Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and materials science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation–dissipation (ACFD) theorem (namely the Rutgers–Chalmers vdW-DF, Vydrov–Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko–Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.

中文翻译:

分子和材料中范德华相互作用的第一性原理模型:概念,理论和应用

非共价范德华力(vdW)或分散力在自然界无处不在,并在整个化学,生物学,物理学和材料科学领域影响分子和材料的结构,稳定性,动力学以及功能。这些力的起源是量子力学的,是由电荷密度波动之间的静电相互作用引起的。在这里,我们探讨了精确处理vdW相互作用所需的概念和数学成分,并提出了一个基于绝热连接波动耗散(ACFD)定理对当前第一原理vdW方法进行分类的系统统一框架(即罗格斯-查默斯(Rutgers-Chalmers)vdW-DF,维德罗夫(Vydrov)-范沃里斯(Van Voorhis)(VV),交换孔偶极矩(XDM),特卡琴科-舍弗勒(TS),多体扩散(MBD),和随机相位逼近(RPA)方法)。特别注意多体vdW交互的有趣性质,其基本相关性最近在几个具有里程碑意义的实验中得到了强调。这些模型在预测结合能,结构,电子和热力学性质方面的性能与理论概念相关,并提供了该领域最新技术的数值摘要。我们以概念,方法,实践和数值挑战的路线图作为结束,这些挑战在为现实的分子系统和材料获得普遍适用且真正可预测的vdW方法时仍然存在。其基本意义最近在几个里程碑式的实验中得到了强调。这些模型在预测结合能,结构,电子和热力学性质方面的性能与理论概念相关,并提供了该领域最新技术的数值摘要。我们以概念,方法,实践和数值挑战的路线图作为结束,这些挑战在为现实的分子系统和材料获得普遍适用且真正可预测的vdW方法时仍然存在。其基本意义最近在几个里程碑式的实验中得到了强调。这些模型在预测结合能,结构,电子和热力学性质方面的性能与理论概念相关,并提供了该领域最新技术的数值摘要。我们以概念,方法,实践和数值挑战的路线图作为结束,这些挑战在为现实的分子系统和材料获得普遍适用且真正可预测的vdW方法时仍然存在。
更新日期:2017-03-08
down
wechat
bug