显示样式:     当前分类: 其他    当前期刊: Annual Review of Astronomy and Astrophysics    加入关注    导出
我的关注
我的收藏
您暂时未登录!
登录
  • How to Characterize Habitable Worlds and Signs of Life
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Lisa Kaltenegger

    The detection of exoplanets orbiting other stars has revolutionized our view of the cosmos. First results suggest that it is teeming with a fascinating diversity of rocky planets, including those in the habitable zone. Even our closest star, Proxima Centauri, harbors a small planet in its habitable zone, Proxima b. With the next generation of telescopes, we will be able to peer into the atmospheres of rocky planets and get a glimpse into other worlds. Using our own planet and its wide range of biota as a Rosetta stone, we explore how we could detect habitability and signs of life on exoplanets over interstellar distances. Current telescopes are not yet powerful enough to characterize habitable exoplanets, but the next generation of telescopes that is already being built will have the capabilities to characterize close-by habitable worlds. The discussion on what makes a planet a habitat and how to detect signs of life is lively. This review will show the latest results, the challenges of how to identify and characterize such habitable worlds, and how near-future telescopes will revolutionize the field. For the first time in human history, we have developed the technology to detect potential habitable worlds. Finding thousands of exoplanets has taken the field of comparative planetology beyond the Solar System.

    更新日期:2017-08-19
  • The Circumgalactic Medium
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Jason Tumlinson, Molly S. Peeples, Jessica K. Werk

    The gas surrounding galaxies outside their disks or interstellar medium and inside their virial radii is known as the circumgalactic medium (CGM). In recent years this component of galaxies has assumed an important role in our understanding of galaxy evolution owing to rapid advances in observational access to this diffuse, nearly invisible material. Observations and simulations of this component of galaxies suggest that it is a multiphase medium characterized by rich dynamics and complex ionization states. The CGM is a source for a galaxy's star-forming fuel, the venue for galactic feedback and recycling, and perhaps the key regulator of the galactic gas supply. We review our evolving knowledge of the CGM with emphasis on its mass, dynamical state, and coevolution with galaxies. Observations from all redshifts and from across the electromagnetic spectrum indicate that CGM gas has a key role in galaxy evolution. We summarize the state of this field and pose unanswered questions for future research.

    更新日期:2017-08-19
  • Small-Scale Challenges to the ΛCDM Paradigm
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    James S. Bullock, Michael Boylan-Kolchin

    The dark energy plus cold dark matter (ΛCDM) cosmological model has been a demonstrably successful framework for predicting and explaining the large-scale structure of the Universe and its evolution with time. Yet on length scales smaller than ∼1 Mpc and mass scales smaller than ∼1011M⊙, the theory faces a number of challenges. For example, the observed cores of many dark matter–dominated galaxies are both less dense and less cuspy than naïvely predicted in ΛCDM. The number of small galaxies and dwarf satellites in the Local Group is also far below the predicted count of low-mass dark matter halos and subhalos within similar volumes. These issues underlie the most well-documented problems with ΛCDM: cusp/core, missing satellites, and too-big-to-fail. The key question is whether a better understanding of baryon physics, dark matter physics, or both is required to meet these challenges. Other anomalies, including the observed planar and orbital configurations of Local Group satellites and the tight baryonic/dark matter scaling relations obeyed by the galaxy population, have been less thoroughly explored in the context of ΛCDM theory. Future surveys to discover faint, distant dwarf galaxies and to precisely measure their masses and density structure hold promising avenues for testing possible solutions to the small-scale challenges going forward. Observational programs to constrain or discover and characterize the number of truly dark low-mass halos are among the most important, and achievable, goals in this field over the next decade. These efforts will either further verify the ΛCDM paradigm or demand a substantial revision in our understanding of the nature of dark matter.

    更新日期:2017-08-19
  • Ultraluminous X-Ray Sources
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Philip Kaaret, Hua Feng, Timothy P. Roberts

    We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations indicates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relationship to the observed behaviors of ULXs. We review the evidence for intermediate-mass black holes (IMBHs) in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early Universe, and the origin of the black hole binary recently detected via gravitational waves.

    更新日期:2017-08-19
  • Magnetars
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Victoria M. Kaspi, Andrei M. Beloborodov

    Magnetars are young and highly magnetized neutron stars that display a wide array of X-ray activity including short bursts, large outbursts, giant flares, and quasi-periodic oscillations, often coupled with interesting timing behavior including enhanced spin-down, glitches, and antiglitches. The bulk of this activity is explained by the evolution and decay of an ultrastrong magnetic field, stressing and breaking the neutron-star crust, which in turn drives twists of the external magnetosphere and powerful magnetospheric currents. The population of detected magnetars has grown to about 30 objects and shows unambiguous phenomenological connection with highly magnetized radio pulsars. Recent progress in magnetar theory includes explanation of the hard X-ray component in the magnetar spectrum and development of surface heating models, explaining the sources’ remarkable radiative output.

    更新日期:2017-08-19
  • Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Sanjib Sharma

    Markov chain Monte Carlo–based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the past decade, we have also seen a steady increase in the number of papers that employ Monte Carlo–based Bayesian analysis. New, efficient Monte Carlo–based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo–based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (https://github.com/sanjibs/bmcmc) Python that implements some of the algorithms and examples discussed here.

    更新日期:2017-08-19
  • Stellar Model Chromospheres and Spectroscopic Diagnostics
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Jeffrey L. Linsky

    The discovery of exoplanets and the desire to understand their atmospheric chemical composition and habitability provides a new rationale for understanding the radiation from X-rays to radio wavelengths emitted by their host stars. Semiempirical models of stellar atmospheres that include accurate treatment of radiative transfer of all important atoms, ions, and molecules provide the essential basis for understanding a star's emitted radiation that is our main data source for characterizing a star and the radiation environment of its exoplanets. In Solar-type and cooler stars, the ultraviolet and extreme ultraviolet radiation formed in their chromospheres and transition regions drive the photochemistry in exoplanet atmospheres. In this review, I describe and critique the development of semiempirical static and time-dependent models of the chromospheres and transition regions of the Sun and cooler stars as well as the spectroscopic diagnostics upon which these models are based. The related topics of stellar coronae and winds and their theoretical bases are beyond the scope of this review.

    更新日期:2017-08-19
  • Observing Interstellar and Intergalactic Magnetic Fields
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    J.L. Han

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

    更新日期:2017-08-19
  • Theoretical Challenges in Galaxy Formation
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Thorsten Naab, Jeremiah P. Ostriker

    Numerical simulations have become a major tool for understanding galaxy formation and evolution. Over the decades the field has made significant progress. It is now possible to simulate the formation of individual galaxies and galaxy populations from well-defined initial conditions with realistic abundances and global properties. An essential component of the calculation is to correctly estimate the inflow to and outflow from forming galaxies because observations indicating low formation efficiency and strong circumgalactic presence of gas are persuasive. Energetic “feedback” from massive stars and accreting supermassive black holes—generally unresolved in cosmological simulations—plays a major role in driving galactic outflows, which have been shown to regulate many aspects of galaxy evolution. A surprisingly large variety of plausible subresolution models succeeds in this exercise. They capture the essential characteristics of the problem, i.e., outflows regulating galactic gas flows, but their predictive power is limited. In this review, we focus on one major challenge for galaxy formation theory: to understand the underlying physical processes that regulate the structure of the interstellar medium, star formation, and the driving of galactic outflows. This requires accurate physical models and numerical simulations, which can precisely describe the multiphase structure of the interstellar medium on the currently unresolved few hundred parsec scales of large-scale cosmological simulations. Such models ultimately require the full accounting for the dominant cooling and heating processes, the radiation and winds from massive stars and accreting black holes, and an accurate treatment of supernova explosions as well as the nonthermal components of the interstellar medium like magnetic fields and cosmic rays.

    更新日期:2017-08-19
  • Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Tal Alexander

    Most galactic nuclei harbor a massive black hole (MBH), whose birth and evolution are closely linked to those of its host galaxy. The unique conditions near the MBH—high velocity and density in the steep potential of a massive singular relativistic object—lead to unusual modes of stellar birth, evolution, dynamics, and death. A complex network of dynamical mechanisms, operating on multiple timescales, deflects stars to orbits that intercept the MBH. Such close encounters lead to energetic interactions with observable signatures and consequences for the evolution of the MBH and its stellar environment. Galactic nuclei are astrophysical laboratories that test and challenge our understanding of MBH formation, strong gravity, stellar dynamics, and stellar physics. I review from a theoretical perspective the wide range of stellar phenomena that occur near MBHs, focusing on the role of stellar dynamics near an isolated MBH in a relaxed stellar cusp.

    更新日期:2017-08-19
  • Galaxies, Globular Clusters, and Dark Matter
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2017-08-18
    Kenneth C. Freeman

    This is an autobiographical account of my scientific career. My main research interest is the structure and assembly of galaxies. The assembly narrative has evolved from the monolithic and baryonic collapse picture of the early 1960s to the current hierarchical scenario underpinned by dark matter, and is still evolving. Technology has changed: CCDs replaced photographic plates and image tubes, large optical telescopes are much larger and instruments are much better, Galactic archaeology is supported by vast stellar surveys, and we have space astronomy and radio synthesis telescopes. The article describes the scientific areas in which I have worked and the colleagues who have influenced my progress. I have much to be grateful for: the people who have mentored and supported me over the years, the privilege of long-term collaborations, and the pleasure of advising many Ph.D. students and postdocs.

    更新日期:2017-08-19
  • Galaxies in the First Billion Years After the Big Bang
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Daniel P. Stark

    In the past five years, deep imaging campaigns conducted with the Hubble Space Telescope (HST) and ground-based observatories have delivered large samples of galaxies at 6.56 UV-selected galaxies are relatively compact with blue UV continuum slopes, low stellar masses, and large specific star formation rates. In the last year, ALMA (the Atacama Large Millimeter Array) and ground-based infrared spectrographs have begun to complement this picture, revealing minimal dust obscuration and hard radiation fields, and providing evidence for metal-poor ionized gas. Weak low-ionization absorption lines suggest a patchy distribution of neutral gas surrounds O and B stars, possibly aiding in the escape of ionizing radiation. Gamma ray burst afterglows and Lyman-α surveys have provided evidence that the intergalactic medium (IGM) evolves from mostly ionized at z≃6−6.5 () to considerably neutral at z≃7−8 (). The reionization history that emerges from considering the UV output of galaxies over 6

    更新日期:2017-08-18
  • Gamma-Ray Observations of Active Galactic Nuclei
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Grzegorz (Greg) Madejski, Marek Sikora

    This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ∼100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observations with (mainly) Fermi but also AGILE and put those in the context of broadband spectra in Section 6. We discuss the radiation processes operating in blazars in Section 7, and we discuss the content of their jets and the constraints on the location of the energy dissipation regions in, respectively, Sections 8 and 9. Section 10 covers the current ideas for particle acceleration processes in jets, and Section 11 discusses the coupling of the jet to the accretion disk in the host galaxy. Finally, Sections 12, 13, and 14 cover, respectively, the contribution of blazars to the diffuse γ-ray background, the utility of blazars to study the extragalactic background light, and the insight they provide for study of populations of supermassive black holes early in the history of the Universe.

    更新日期:2017-08-18
  • Six Decades of Spiral Density Wave Theory
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Frank H. Shu

    The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular momentum in the regions interior and exterior, respectively, to the corotation circle; the consequent transmission and overreflection of propagating spiral density waves incident on the corotation circle; and the role of feedback from the central regions.

    更新日期:2017-08-18
  • Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Michele Cappellari

    Observations of galaxy isophotes, long-slit kinematics, and high-resolution photometry suggested a possible dichotomy between two distinct classes of elliptical galaxies. But these methods are expensive for large galaxy samples. Instead, integral field spectroscopy can efficiently recognize the shape, dynamics, and stellar population of complete samples of early-type galaxies (ETGs). These studies showed that the two main classes, the fast and slow rotators, can be separated using stellar kinematics. I show that there is a dichotomy in the dynamics of the two classes. The slow rotators are weakly triaxial and dominate above . Below Mcrit, the structure of fast rotators parallels that of spiral galaxies. There is a smooth sequence along which the age, the metal content, the enhancement in α-elements, and the weight of the stellar initial mass function all increase with the central mass density slope, or bulge mass fraction, while the molecular gas fraction correspondingly decreases. The properties of ETGs on galaxy scaling relations, in particular the diagram, and their dependence on environment, indicate two main independent channels for galaxy evolution. Fast-rotator ETGs start as star-forming disks and evolve through a channel dominated by gas accretion, bulge growth, and quenching, whereas slow rotators assemble near the centers of massive halos via intense star formation at high redshift and remain as such for the rest of their evolution via a channel dominated by gas poor mergers. This is consistent with independent studies of the galaxies redshift evolution.

    更新日期:2017-08-18
  • The Galaxy in Context: Structural, Kinematic, and Integrated Properties
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Joss Bland-Hawthorn, Ortwin Gerhard

    Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated “green valley” region of the galaxy color-magnitude diagram. Here we review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamental role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations.

    更新日期:2017-08-18
  • Protostellar Outflows
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    John Bally

    Outflows from accreting, rotating, and magnetized systems are ubiquitous. Protostellar outflows can be observed from radio to X-ray wavelengths in the continuum and a multitude of spectral lines that probe a wide range of physical conditions, chemical phases, radial velocities, and proper motions. Wide-field visual and near-IR data, mid-IR observations from space, and aperture synthesis with centimeter- and millimeterwave interferometers are revolutionizing outflow studies. Many outflows originate in multiple systems and clusters. Although most flows are bipolar and some contain highly collimated jets, others are wide-angle winds, and a few are nearly isotropic and exhibit explosive behavior. Morphologies and velocity fields indicate variations in ejection velocity, mass-loss rate, and in some cases, flow orientation and degree of collimation. These trends indicate that stellar accretion is episodic and often occurs in a complex dynamical environment. Outflow power increases with source luminosity but decreases with evolutionary stage. The youngest outflows are small and best traced by molecules such as CO, SiO, H2O, and H2. Older outflows can grow to parsec scales and are best traced by shock-excited atoms and ions such as hydrogen-recombination lines, [Sii], and [Oii]. Outflows inject momentum and energy into their surroundings and provide an important mechanism in the self-regulation of star formation. However, momentum injection rates remain uncertain with estimates providing lower bounds.

    更新日期:2017-08-18
  • The Eccentric Kozai-Lidov Effect and Its Applications
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Smadar Naoz

    The hierarchical triple-body approximation has useful applications to a variety of systems from planetary and stellar scales to supermassive black holes. In this approximation, the energy of each orbit is separately conserved, and therefore the two semimajor axes are constants. On timescales much larger than the orbital periods, the orbits exchange angular momentum, which leads to eccentricity and orientation (i.e., inclination) oscillations. The orbits' eccentricity can reach extreme values, leading to a nearly radial motion, which can further evolve into short orbit periods and merging binaries. Furthermore, the orbits' mutual inclinations may change dramatically from pure prograde to pure retrograde, leading to misalignment and a wide range of inclinations. This dynamical behavior is coined the “eccentric Kozai-Lidov mechanism.” The behavior of such a system is exciting, rich, and chaotic in nature. Furthermore, these dynamics are accessible from a large part of the triple-body parameter space and can be applied to a diverse range of astrophysical settings and used to gain insights into many puzzles.

    更新日期:2017-08-18
  • Masses, Radii, and the Equation of State of Neutron Stars
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Feryal Özel, Paulo Freire

    We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9–2.0-M⊙ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10–11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties of cold nuclear matter at densities higher than that of the atomic nucleus, a major unsolved problem in modern physics.

    更新日期:2017-08-18
  • The Magellanic Stream: Circumnavigating the Galaxy
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Elena D'Onghia, Andrew J. Fox

    The Magellanic Clouds are surrounded by an extended network of gaseous structures. Chief among these is the Magellanic Stream, an interwoven tail of filaments trailing the Clouds in their orbit around the Milky Way. When considered in tandem with its Leading Arm, the Stream stretches over 200° on the sky. The Stream is thought to represent the result of tidal interactions between the Clouds and ram-pressure forces exerted by the Galactic corona, and its kinematic properties reflect the dynamical history of the pair of dwarf galaxies closest to the Milky Way. The Stream is a benchmark for hydrodynamical simulations of accreting gas and cloud/corona interactions. If the Stream survives these interactions and arrives safely in the Galactic disk, its cargo of over a billion solar masses of gas has the potential to maintain or elevate the Galactic star-formation rate. In this article, we review the current state of knowledge of the Stream, including its chemical composition, physical conditions, origin, and fate. We also review the dynamics of the Magellanic System, including the proper motions and orbital history of the Large and Small Magellanic Clouds, the first-passage and second-passage scenarios, and the evidence for a Magellanic Group of galaxies.

    更新日期:2017-08-18
  • The Evolution of the Intergalactic Medium
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Matthew McQuinn

    The bulk of cosmic matter resides in a dilute reservoir that fills the space between galaxies, the intergalactic medium (IGM). The history of this reservoir is intimately tied to the cosmic histories of structure formation, star formation, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2≲z≲5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. However, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measurements that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.

    更新日期:2017-08-18
  • Gravitational Instabilities in Circumstellar Disks
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Kaitlin Kratter, Giuseppe Lodato

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular momentum transport rate in thick disks.

    更新日期:2017-08-18
  • The Quest for B Modes from Inflationary Gravitational Waves
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Marc Kamionkowski, Ely D. Kovetz

    The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gravitational-wave background.

    更新日期:2017-08-18
  • Interstellar Hydrides
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Maryvonne Gerin, David A. Neufeld, Javier R. Goicoechea

    Interstellar hydrides—that is, molecules containing a single heavy element atom with one or more hydrogen atoms—were among the first molecules detected outside the solar system. They lie at the root of interstellar chemistry, being among the first species to form in initially atomic gas, along with molecular hydrogen and its associated ions. Because the chemical pathways leading to the formation of interstellar hydrides are relatively simple, the analysis of the observed abundances is relatively straightforward and provides key information about the environments where hydrides are found. Recent years have seen rapid progress in our understanding of interstellar hydrides, thanks largely to FIR and submillimeter observations performed with the Herschel Space Observatory. In this review, we discuss observations of interstellar hydrides, along with the advanced modeling approaches that have been used to interpret them and the unique information that has thereby been obtained.

    更新日期:2017-08-18
  • Accretion onto Pre-Main-Sequence Stars
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Lee Hartmann, Gregory Herczeg, Nuria Calvet

    Accretion through circumstellar disks plays an important role in star formation and in establishing the properties of the regions in which planets form and migrate. The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low-ionization conditions in major regions of protoplanetary disks lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood. Accretion in pre-main-sequence stars of masses ≲1M⊙ (and in at least some 2–3-M⊙ systems) is generally funneled by the stellar magnetic field, which disrupts the disk at scales typically of order a few stellar radii. Matter moving at near free-fall velocities shocks at the stellar surface; the resulting accretion luminosities from the dissipation of kinetic energy indicate that mass addition during the T Tauri phase over the typical disk lifetime ∼3 Myr is modest in terms of stellar evolution, but is comparable to total disk reservoirs as estimated from millimeter-wave dust emission (∼10−2 M⊙). Pre-main-sequence accretion is not steady, encompassing timescales ranging from approximately hours to a century, with longer-timescale variations tending to be the largest. Accretion during the protostellar phase—while the protostellar envelope is still falling onto the disk—is much less well understood, mostly because the properties of the central obscured protostar are difficult to estimate. Kinematic measurements of protostellar masses with new interfometric facilities should improve estimates of accretion rates during the earliest phases of star formation.

    更新日期:2017-08-18
  • Red Clump Stars
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Léo Girardi

    Low-mass stars in their core-helium-burning stage define the sharpest feature present in the color-magnitude diagrams of nearby galaxy systems: the red clump (RC). This feature has given rise to a series of methods aimed at measuring the distributions of stellar distances and extinctions, especially in the Magellanic Clouds and Milky Way Bulge. Because the RC is easily recognizable within the data of large spectroscopic and asteroseismic surveys, it is a useful probe of stellar densities, kinematics, and chemical abundances across the Milky Way disk; it can be applied up to larger distances than that allowed by dwarfs; and it has better accuracy than is possible with other kinds of giants. Here, we discuss the reasons for the RC narrowness in several sets of observational data, its fine structure, and the presence of systematic changes in the RC properties as regards age, metallicity, and the observed passband. These factors set the limits on the validity and accuracy of several RC methods defined in the literature.

    更新日期:2017-08-18
  • Astrophysics with Extraterrestrial Materials
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Larry R. Nittler, Fred Ciesla

    Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.

    更新日期:2017-08-18
  • The Remnant of Supernova 1987A
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Richard McCray, Claes Fransson

    Although it has faded by a factor of ∼107, SN 1987A is still bright enough to be observed in almost every band of the electromagnetic spectrum. Today, the bolometric luminosity of the debris is dominated by a far-infrared (∼200μm) continuum from ∼0.5 M⊙ of dust grains in the interior debris. The dust is heated by UV, optical, and near-infrared (NIR) emission resulting from radioactive energy deposition by 44Ti.

    更新日期:2017-08-18
  • A Fortunate Half-Century
    Annu. Rev. Astron. Astrophys. (IF 30.733) Pub Date : 2016-09-19
    Jeremiah P. Ostriker

    The author has had the happy opportunity to work and study in the field of theoretical astrophysics during a half-century of unparalleled observational discovery. Quasars, pulsars, large-scale cosmic structure, galaxy evolution, and many other phenomena were discovered using revolutionary new observational techniques. In the same period of time, analytical tools ranging from new disciplines like plasma physics to enormously enhanced computational facilities became available, giving theoreticians the machinery to make some sense of this new world. At the start of the era the extragalactic world was largely framed as a quasi-homogeneous Universe of static galaxies formed by unknown and in fact unexamined processes. By the end of the period there was widespread acceptance of a self-consistent, evolving cosmological model amenable to calculation and comprehension. The author was fortunate indeed to have had the chance to collaborate with many wonderfully talented colleagues during this exciting time, attempting to unravel the multiple cosmic puzzles that nature delivered to us.

    更新日期:2017-08-18
Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
所有期刊列表A-Z